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JOHAN VAN BENTHEM

TOWARDS A COMPUTATIONAL SEMANTICS

1. INTRODUCTION

In ordinary model-theoretic semantics, set-theoretic denotations are
assigned to linguistic expressions without regard to computational
complexity. Yet, there is a reasonable prima facie case for the assump-
tion that at least basic items in natural language correspond to simple
procedures, that are easy to learn, What is needed to investigate such
ideas is a way of thinking ‘procedurally’ about the usual semantic
denotations. In line with our earlier paper van Benthem 1984b, the
basic notion here is that of an aufomator, as developed extensively in
mathematical linguistics (see Hoperoft & Ullman 1979). Thus, one of
the main supports of formal syntax is enlisted in the service of
semantics.

The prime example in the above-mentioned paper was the computa-
tion of generalized quantifiers, viewed as relations (Q between subsets
A, B of universes of individuals F:

E
A B| a=|A—B|,b=|4 N B|
O AB

c=|B—Al|,e=|E—(A U B)|

An automaton for Q searches through all individuals in £, marked for
their membership of the four relevant ‘slots’, say, using symbols a, b, ¢,
¢ [alternatively, the automaton might perform A, B-tests on actual
individuals], and accepts or rejects when E has been enumerated
completely.

Indeed, under the usual assumptions on quantifiers , being
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32 JOHAN VAN BENTHEM

Quantity (QzAB depends only on the cardinalities 4, b, ¢ e),
Extension (QzAB depends only on A U BY}and Conservativity (QgAB
holds if and only if QgA(B N A)), only the labels ‘e’ and ‘b’ will
matter, Of course, many generalizations are possible subsequently.

EXAMPLE. A finite state machine computing a{l A are B:
a Y 1 initial state
Y . .
‘50 « : accepting state
b0 a “Ubp o
o : rejecting state

EXAMPLE, A push-down store automaton computing rnost A are B:

read |
symbol
store remove
<— Yes top stack
symbaol sgrnbo!
(s

symbol
read
equals
top stack
symbaol?

Recognition: at the end of a sequence read, if the stack contains only
symbols b,

EXAMPLE. A tree automaton computing if A, then B: (in the sense
of ‘all A-worlds in the possible worlds tree which lie closest to the root
[modelling the ‘vantage point’] are B-worlds’)

move upward from the leaves towards the root,
leaving markers +/— (‘accept’, ‘reject”) on nodes,
according to the instruction:
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check features of the current node:
— if A, then, if B:write +
else : write —
— if not A, then, if all daughters have +
already: write -+
else : write —

For instance:

AB

AB N AN AVVAN

AP AR 4B

In this third case, the relation computed is not ‘quantitative’, as the
pattern of the individuals in the universe surveyed is crucial to the
evalvation: conditionals are analogous to, but not quite identical with
quantifiers.

In this paper, both quantitative and nonquantitative automata will be
studied, starting with the former.

2. FINITE STATE MACHINES
2.1, Permutation Invarianece

Many quantifiers can already be computed at the lowest level of the
automata hierarchy, by means of finite state machines. The above
example of all can be taken as a paradigm for computing, e.g., some,
no, not all, but also, allowing more than two states, one, Iwo, three,
...,allbutone,. ..., betweenthree and nine, . . ., eicetera.

One immediate effect of Quantity is permutation-closure of the ‘lan-
guages’ (E-descriptions) accepted by such automata; if, e.g, abbaaba
is accepted, then so are all strings with 4 a's and 3 b's. In the
given transition graph for all, this property follows from permutation-
invariance of the machine itself: if reading some string of a, b takes the
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machine from a state ¢, to a state g,, then reading any permutation of
that string will result in the same state transition.

THEOREM. The permutation-closed regular languages are precisely
those recognizable by some permutation-invariant finite state machine.
Proof. Permutation-invariant machines obviously recognize permuta-
tion-closed languages. (Look at trajectories from the initial state to
accepting states.)
Conversely, let L be a permutation-closed regular fanguage, Define
an equivalence relation ~ 1 among strings as follows:

s ~otif,forallstrings u, s"u E L t"ue L,

There will be only finitely many equivalence classes "s' (for a regular
fanguage, that is), which can be taken as ‘states’, with a transition
convention
o T o
Y = sNay.
Accepting states 5" are those having s € L; the initial state is T
By the Nerode Theorem, this automaton recognizes precisely the

strings in L. Moreover, if L is permutation-closed, then it wili even be
permutation-invariant:

Let o be a sequence {4, . . . , a4}, sending 5" to 57 a” Now, let
¢’ be any permutation of a. It will send 5" to "s"a’", which
equals "s"a” (and we are done) The latter equality follows from
sNe ~rsMaif uis any string, s%a' ®  is a permutation of s " & " u,
andhences"a'"uE LosNa"vel &

Natural language also has examples of ‘ordinal uses of quantifiers,
where the order of inspection is important, such as “Every third
prisoner was beheaded”, “You will make a dollar for every hundred
words in the manuscript”, Moreover, there are so-called ‘branching’
uses, where parallel enumeration seems to occur; “Most girls in this
commer and most boys in that corner hate each other”. The automata
perspective certainly seems capable of handling such cases; but, they
will not be pursued here. (Another example with such a more ‘dynamic’

flavour: the so-called ‘cumulative’ reading of “Five authors produed one
hundred poems”,)
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2.2, First-Order Quantifiers

The earlier examples were all first-order, differing only in the number of
states for their computation, (E.g, one requires at least three states.)
But, there are other finite state quantifiers too.

EXAMPLE. A finite state machine computing an even number of A
are B;

a C‘g{—i—%o’a ]

A conspicuous difference with the earlier diagram is the occurrence of
a ‘2-cycle’ here, needed for keeping track of the required periodicity.
First-order quantifiers lack such devices (except for 1-cycles): their
associated machines can be taken to be acyclic.

THEOREM. The first-order quantifiers are precisely those which can
be computed by permutation-invariant acyclic finite state machines,

The proof exploits the special geometric form of first-order quantifiers,
when represented in the Tree of Numbers (van Benthem 1984b). This
is only one instance of a paraliel between truth-value patterns for
quantifiers (as displayed in that Tree) and an automaton representation.
Another example are the various notions of ‘homogeneity’ for such
patterns (cf. van Benthem 1985a), which can be matched with finite
state computability using varying numbers of states.

2.3, Testable Languages

The above characteristic of first-orderness has an independent motiva-
tion, as will be illustrated by connecting it up with the main notion of
McNaughton & Papert (1971), a monograph devoted to so-called
testable languages — for which the authors claim special psychological
relevance.

First, some definitions are needed. A language L is ‘k-testable’
(k 2 1)ifitis closed under the following equivalence relation:

s ~x ¢t if () s ¢ havelength < 2k and are identical, or else
(ii) s, ¢ have length > 2k and they have
(a) identical initial segments of length k,
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(b) identical final segments of length &,

(c) identical ‘occurrence sets’ of sequences of
length k in between their first and last
elements.

For instance, 111000 ~211110000, 1100100 ~21100100100. The
intuitive idea is that recognition of such languages only requires ‘local
tests’ on subsequences of fixed length. Next, a language is ‘locally
testable’ if it is A-testable for some &, Finally, a ‘testable’ language is any
construct out of locally iestable ones by repeated Boolean Operations
and Sequencing (these being obvious effective operations).

For the special case of quantifiers, eg., the four members of the
Square of Opposition are locally testable (al], some, no, not all), in
fact, 1-testable. On the other hand, af least two already becomes non-
locally testable:

the sequence a*abaa* is not in its language,
whereas its ~ «-equivalent a*aba*baa* is.

The latter quantifier is testable, however, being expressible as the
sequence “at least one; at least one”, The general situation is as follows.

THEOREM, The testuble languages are precisely those having an
acyclic finite state recognizer.

Proof. First, here is the inclusion 2. The set of accepted strings for
an acyclic automaton may be described as a finite disjunction (a
Boolean Operation) of accepted ‘trajectories’, one for each accepting
state, Because there are no non-unit cycles, each such state accepts only

a finite set of trajectories {another disjunction), of a form exemplified in
the regular notation

a.b.a*.b.c*

The latter are sequences (another admissible operation) of two types of
basic case:

~— asingle symbol a (and singleton languages are 1-testable)
— ‘homogeneous’ languages a* {again, a 1-testable case),

For the reverse inclusion &, some closure properties of ‘acyclic
languages’ are useful. The latter are closed under
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(1) complements:
reversing accepting and rejecting states introduces no loops;

(2) intersections:
the usual construction of a ‘product-automaton’ out of two separate
(acyclic) ones creates no loops.

Thus, we have Boolean closure. Moreover, we have closure under

(3) sequencing:

Proof. Let A, be acyclic, recognizing L,, and A,, likewise, L,. Attach
disjoint copies of A4, to each recognizing state in A,, fusing the latter
with the starting state in the copy of A,. The new recognizing states will
be only those in the A,-copies, The new automaton has no loops. Also,
it recognizes exactly L,; L, — be it only non-deterministically.

For, everything recognized is evidently in Ly; L.

Converscly, every sequence in L,; I, can be recognized by a
judicious sequence of moves, choosing the right moment to enter a

To return to deterministic recognition, a final lemma is needed.

(4) languages with a non-deterministic recognizing acyclic automaton
also have a deterministic acyclic recognizer,

Proof, The usual construction of a deterministic ‘power-set automa-
ton’ for the same language introduces ne new loops. (Recall that
X, & X, if X, is the set of all states reachable from some state in X, by
reading a, in the old automaton. Then, a loop X, = X; = ... ~ X
would always presuppose the existence of a non-trivial loop between
single states aswell.) W
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Already, these four observations take care of the recursion steps in the
definition of testable languages. There remains the basic step:

LEMMA. Every k-testable language is acyclically recognizable (k 2 1).
Proof, Bvery such language can be described as a finite union

(Boolean, and hence admissible) of accepted elementary cases, given by

a triple;

— fixed initial sequence of length k,

-~ fixed final sequence of length k,

— some ‘interior set’ of k-sequences.

(In addition, there may be some isolated single sequences of length
< 2k; which each have an obvious acyclic recognizer) Now, every
sequence salistying the above triple description is in the intersection
(again, Boolean) of three languages which can be acyclically recognized,

— fixed expression & followed by an arbitrary sequence: this is 2
sequencing of ‘€ only’ and ‘all sequences’, both of which are
acyclic,

— arbitrary sequence followed by fixed expression € likewise.

— a finite intersection of sequencings of ‘all non-empty sequences’
(acyclic), ‘one single expression &’ (acyclic), ‘all non-empty
sequences’ fthis enforces the occurrence of all k-sequences in the
Snterior set] and complements of similar expressions for &=
sequences outside of the interior set. B

This completes the proof of the theorem, &
In particuiar, the promised characterization follows:

COROLLARY, The first order quantifiers correspond exactly to the
permuitation-closed testable languages.

Finally, here is a result inspired by a question of Frans Zwarts, who
observed that the basic logical quantifiers are locally testable, but
hardly any others. (It is Sequencing and Boolean Operations which
bring in the other first-order cases.) Using some combinatorial reason-
ing in the Tree of Numbers, we have the following

THEOREM. The permutation-closed k-testable languages 1 are pre-
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cisely those which can be represented in the Tree of Numbers by an
arbitrary top triangle followed by a ‘flattened cone’ definable by some
disjunction of quantifiers in the Square of Opposition.

Proof, Here are two illustrations, for a two-symbol alphabet. First,
consider the tree level 2k + 2, with entries -+/— at the positions

GZR+2,_ . ak+1,bk+l R b2k+2

The middle entry determines (non-ymembership of the language for all
sequences with at least k + 1 occurrences of 4 and also for b, To see
this, write g**1 b**1 as follows: a*abb¥, and observe how arbitrary
a, b can be inserted to obtain ~x-equivalent sequences: akaa*b*bb*,

Next, at this same level, consider any entry at a/, b', with { < k. This
determines the language behaviour of all sequences with additional
symbols a, since a**+!a* ¥~ 1bf ~ gkt 1gta* a*—i+1p! But also, as
long as k > 1 > 0, adding symbols b makes no change, by the
equivalence baX(ba*)*a™ ~x ba*(ba*y*(ba*)*a™ (using the previous
observation to disregard additional symbols a). #

2.4. Further Topics

There are various further topics in this area. For instance, the above
results can also be obtained for arbitrary finite alphabets. E.g,, acyclic
automata will then recognize finite unions of languages having the
following type of description, ‘the number of occurrences of a; equals
n/isatleast m; (1 S i < k).

Another interesting case is rather that of one-symbol alphabets: the
preceding cases seem to reduce to ‘compositions’ of the latter. All one-
symbol languages are permutation-closed, and hence are precisely
characterized by their Parikh-tuples (cf. van Benthem 1984b): which
gives them a canonical representation in terms of ‘semi-linear’ sets of
natural numbers. (This amounts to a reduction in complexity of the
usual regular set notation for this case — as one can reduce all nested
occurrences of Kleene stars to one single layer.)

Another general theme of interest is the comparison of indepen-
dently motivated semantic constraints on quantifiers with special
properties of the machines computing them. For instance, monotonicity
(ie, QAB, B & B’ implies QAB") will show up as follows:

whenever a string a makes the machine go from state s, to
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5, and s, is accepting, then any string @’ obtained from &
by replacing symbols a by b will drive the machine from §
to an accepling state too.

The proof uses the Nerode representation (cf. Section 2.1). In' this way,
the question may be shown to be decidable if a given finite-state
computable quantifier is monotone.

3. PUSH-DOWN STORE AUTOMATA

Computing higher-order quantifiers will in general require the use of
machines with memory, in the simplest case: push-down store automata.
One first question then becomes how much new power of expressing
quantifiers has been added in this way — say, viewed as numerical

relations on the occurrence numbers for the symbols a, b. The answer
is in van Benthem 1984b:

THEOREM. The binary quantifiers computable by push-dow.fz store
automara correspond precisely to those relations on a, b which are
definable in purely additive first-order Presshurger Arithmetic.

This description still leaves a multitude of theoretical possibilities, only
a few of which are realized in natural language. Here, the earlier
example most exemplifies a general tendency toward ‘proportionality’,
a notion which also seems to lie behind the intuitively most plausible
readings for, eg, many, few. Therefore, additional constraints were

formulated in the above-mentioned paper, leading fo a typical Tesult
such as the following.

THEOREM. The bilinear continuous quantifiers (among the above)
are precisely those in the following ‘Squares of Opposition’ (n  0):

at least 1 t most !
2 a a5
n+1 n+1’

more than

n 1
s I
1 ess than 1

Actually, it would perhaps be preferable to have these additional
constraints in the form of restrictions on the automata themselves. (See
Section 8 for some reasonable restrictions on the action of push-down



TOWARDS A COMPUTATIONAL SEMANTICS 41

store automata) For instance, returning to more general semantic
constraints,

when does a given push-down store automaton recognize a
permutation-closed language? a monotone language? And,
are these properties decidable?

One striking feature of this area of complexity is that many such
questions will indeed be decidable, because Pressburger Arithmetic is a
decidable subtheory of full arithmetic (the latter being undecidable, and
indeed highly complex, by G&del's Incompleteness Theorem), For
instance, with a quantifier presented as a push-down store automaton
M,, we can effectively determine its additive equivalent g, and then
check if, say,

Vaba'b'((a+b=a +b Aa S a A pg(a b))~ po(e’, b)) (Monotonicity)
Vab{ug,(a, b) * ug,(a, b)) (Equivalence).

The full power of arithmetic will only be involved with quantifiers {or
other linguistic expressions) requiring multiplication in their meaning,
This has indeed been claimed for certain readings of e.g., many, or the
modifier very, But, the case is far from being conclusive.

Another possible extension beyond the present area is more plau-
sible. The above characterization of push-down computability works
only for two-symbol alphabets. Higher-up, non-contexi-free cases arise,
even in additive arithmetic, such as ‘a = b = ¢ representing the
(context-sensitive) language of all sequences with equal numbers of
occurrences of the symbols a, b, ¢. Do such cases occur naturally in
ordinary language?

EXAMPLE. Polyadic determiners (see Keenan & Moss 1985). Con-
structions such as more A than B are C require a six-element alphabet,
at least, assuming the appropriate form of Conservativity here:

QAB, C & QAB,C N (A U B).
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The numerical condition here remains push-down computable, how-
ever: d > f Similarly, as many A as B are C becomes 4 = £ Ouly the
iterated as many A as B as C are D leads to a more complex type: and
this is certainly of doubtful grammaticality.

Still, it should be clear that nothing hinges on a general restriction to
push-down computability: the purpose of this paper is rather to point
out where ‘jumps’ in complexity arise in semantics.

In any case, the main thrust from now on is not toward the study of
more complex machine action, but toward the topic of simple machines

operating on more complex data than the present linear sequences of
symbols.

4. TREE AUTOMATA

4.1, Setting up the Format

Many expressions operate on ‘structured’ domains. For instance, inten-
sional operators were computed on possible worlds graphs in Section 1.
This is a frequent phenomenon in semantics: one has a semantic
domain in the form of a relational graph, which the automaton is to
survey in some order. (For a non-intensional example, think of a
comparative order when computing measure adjectives, of some
‘possession order’ when computing possessive expressions (n1y, ’$))
One important case which admits of a rather straightforward kind of
survey is that of (finite) acyclic graphs, or even just finite trees. Here, an
automaton can start at the bottom leaves, working its way up to the top
node in an obvious inductive manner. Trees are widespread, alsa in
semantic modelling — and so we shall study this special case here, as 4
pilot example for the feasibility of our enterprise. (But of course, in the
end, one should be able to operate on arbitrary graphs).

A similar move from linear sequences to trees has been made
already in mathematical linguistics (cf. Perrault 1984). The two cases
are not completely analogous, however, in that syntactic structure trees
usually have a fixed set of branching patterns (unary, binary, perhaps
ternary) — whereas no such constraints need be expected for sernantic
structures. Moreover, left-right order of descendants carries no seman-
tic information, whereas it may do so in syntax.

The simplest kind of automaton to be of semantic use on trees
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operates as follows. There is a facility for testing if nodes carry certain
features, as well as a finite state machine inspecting final states already
reached on immediate descendants, and finally, a device for printing
state markers on nodes surveyed. The total procedure is as follows:

— the tree is surveyed, level by level, starting at the bottom leaves,

— when a node is inspected, its features are checked, to determine in
which state to start the finite state automaton surveying its imme-
diate descendants (or rather, the string of final state markers left
there after the preceding round),

— the final state reached by the automaton is printed on the current
node.

Thus, there is a ‘conditional program’ here: “if features,, then do M; if
features,, then do M,; etcetera”, Then, the automaton M may be just a
disconnected union of components M,, M, . . .
EXAMPLE. Computing the property of ‘alternation”.

Vx(Ax = Vy(R*xy = 1 Ay)) A Vx(1 Ax = Vy(R*xy = Ay)).

‘Here, quantification is over nodes in the tree, which can carry one feature
(A).‘R’ expresses dominance of nodes, ‘R*’ immediate dominance.
Our machine has three states:

a, (‘accept, with top node A”)
a, (‘accept, with top node - A”)
b (reject’).

Its diagram is this (with markers g* for state q):

a*

2
Cal.ﬁ —— a HT

b*

Here, b is an absorbing state, The starting convention is this: “with
feature A, start at a,; without feature A, startat @)’

4.2. An Alternative

As is usual with automata, there are attractive variants of the above set-
up. For instance, at each new level, one could let the machine search
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first through all final state markers on immediate predecessors (starting
from some fixed initial state), looking at the features of the current
node only afterwards, to decide the 'exit state’.

Every property of trees recognized in the original format canbe
recognized with the new one. For, let a ‘feature to entry’ convention be
given for a machine M (old-style). In the new format, we cannot
influence where to start our machine: it always departs from the same
initial state — but, we have the power to ‘interpret its final states. So,
take a new automaton whose states are #-tuples of former states in M
(with # the total number of old states). Transitions are the obvious
ones: copy the old transitions for the marker read, coordinate-wise.
Then, final states encode all outcomes for the original M, from all its
possible starting states, with respect to the current input. So, the final
convention only has to let the features of the current node pick out the
final state at the coordinate given by its former entry convention,
Actually, this does require a liberalization of the earlier scheme, in that
the markers printed do not correspond one-to-one with the new states,
But in any case, separating ‘states’ from ‘auxiliary output symbols’
seems a reasonable policy — to be followed henceforth,

With this more liberal perspective, a converse simulation is possible
too. States now become couples of (old state, initial feature), with
transitions computed as before, on the first coordinate, We enter the
machine in (initial state, feature read), and then use the former ‘exit
convention’ to decide the eventual (stateymarker to be printed.

5. RECOGNITION AND RECURSION

5.1, Second-Order Definitions

Any given tree automaton M obviously recognizes a definite property
7y of trees, whose extension is the class of trees accepted by M, (Here,
we assume the original format of Section 4.1,) Can this property also be
described in a more explicit manner? At least, there is a straightforward
way of describing the machine action in a fragment of higher-order
logic, using only sentences of the form

A0, AR, S, Ary- Ay Qs Qi)

where ‘0, ..., ‘Qy,’ are unary set variables, and ¢ is a first-order
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sentence involving the dominance order R, some linear ordering S,
Ay, ..., A, (viewed as ‘feature properties’), and @y, ..., Oy (mOW
viewed as ‘auxiliary properties’). Such sentences are called monadic X}-
sentences, :

THEOREM. For every finite state tree automaton M, its property
computed (my) is monadic X 1.

Proof. Our task is just to check that everything explained in Section
4 can be expressed in this formalism. Here are the main steps.
(i) The tree has really just the structure type (T, R, Ay, ..., A,), where
the latter induce 2" exhaustive ‘features’ (or ‘node descriptions’). The
latter each have an associated state in M, via the ‘entry convention'.

Notation: feature set F, state set J,
foreach f € F,thereis an associated ¢(f) € Q.

(i) The linear order § represents one particular way of enumerating
the tree, which induces an order on the immediate predecessors of any
given node x.

Define:  F,(y): ="'y is §-first among x’s immediate predecessors’,
L,(y):=‘yis S-lastin that set’
N.(y, o) ="y S-precedes y, immediately in that set’,

(iif) Now, foreach state ¢ & (), take two unary predicate letters,

q*x (intuitively, ‘x finally gets Q-marker printed’)
gx (intuitively, ‘M has state Q immediately after inspecting
x".
State that: both the g*’s and ¢’s partition T' exhaustively.
(iv) ‘Bottom leaves™

state that: Vx(-JyRxy — N (F(xy A q( )N
fEF

(The initial state here is also the final state; as there are no prede-
CESS0TS,)
(v) ‘Climbing the tree”:

state that: Vx@Rxy = ¥ (F(x) A YV (u(a(f)x @) A a*0N;
fEF gE 0
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where 1(q,, X, ¢,) says that, starting in state g,, M will end
in state g, after having surveyed all of x's immediate
predecessors.

To define this, let M [qj, g%} be the state assumed by M
when reading marker g} in state g;. Then, we merely write
out the transiiion diagram for M.

I(F) A \E/Q (") A Mig, g () A
Yy, (N9 1) ,,.,XZQ (@) A g™ (m) A

Mig, g () A 39(a(3) A @)
{(vi) ‘Successon top”

state that: in the top node, g* holds for some accepting state ¢ € 0.
m); can now be presented as the canjunction of all these (first-order)

statements, prefixed by existential quantifiers over the unary predxcates
29" g EQ). W

If one wishes, the linear order S can also be quantified away existen-
tially in the above formula .

A somewhal greater change would be necessary if the machine is
allowed to inspect, not just the immediate predecessors, but all prede-
cessors of a given node. In that case, many ‘visits’ will occur, and the
global g/g*-trick does not work, One solution is then to postulate the
existence of suitable predicates g (representing M’s inspection) ‘locally’
at each node. Again, second-order logic allows transformation into a
Z{-sentence here, through the equivalence

Vx30Wd(x, O) + IROVxg(x, ‘Ay.Rxy).

Note, however, that this will introduce second-order quantification over
predicates of higher arities, not just sets.

5.2. Unwinding Recursion

Still, the above description does not count as a genuine ‘explanation’ of
what a machine M recognizes: it merely restates the recognition
procedure. What would be a more satisfactory solution? For instance, if
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M is acyclic, checking some first-order condition on predecessor states,
we would like to obtain some explicit first-order definition of x,, also,
in terms of the tree order and the feature predicates (such as those
occurring in earlier example). This can be quite difficult already.

EXAMPLE. (1) Consider a machine M with the following action:

— if a node has feature A, then it ends up accepting it if and only if no
predecessor was accepted,

— if the nade lacks feature A, then M accepts it if and only if some
predecessor was accepted.

It is not easy to describe sy, (although one can form an impression, by
looking at small trees first).

(2) And difficulties increase with more complex (though still first-
order) recursions such as

— iffeature A, then accept iff exactly one predecessor was accepted,
— otherwise, accept iff no predecessor was accepted,

The general problem is this; we want to turn a recrrsive implicit
definition of &, into an explicit one, in the same language used in
stating the recursive clauses. The general scheme here is this:

q(x) + \ (f(x) A ‘first-order condition on cccurrences
feF - ofstates gy, . . ., g, among x’s predecessors’)

q.(xy = [likewise].
This is a simultaneous recursive definition for final state predicates on
nodes, by recursion on the (well-founded) relation of precedence in

trees. (And, of course, 7ty, will be the statement that the top node has
some accepting state predicate.)

5.3. A Modal Logic Perspective

Now, consider the simplest possible special case of this, being a one-
line recursion with just basic quantifiers (V, 3) over predecessors. The
latter can be viewed as modal operators (O, ©). an analogy that will
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tern out useful. For instance, (1) in the preceding example has the
modal form (with ‘Acc’ for accept):

Acc < (A ADRAcc) V (A A ©Acc)

This perspective points at a relevant result in modal logic, viz. the
De Jongh-Sambin Fixed-Point Theorem (cf. Smorydski 1984). This

theorem says that there is an effective procedure 7 for obtaining fixed-
points for modai schemata

P opg)

{with p only occurring in ¢ in the scope of at least one modal operator;
which enforces the required recursion), Le., 7($) is 2 modal formula in

the parameters ¢ only such that the following equivalence is valid on
all finite trees:

a(g) © $(p), 7).

REMARK. There is one important proviso here: the modal operators
are to range over all predecessors of a node, not just immediale
predecessors (cf. Section 5.1). In the remainder of this section, we shall
make this assumption about our machines too (returning to this issue in
Section 6).

The exact method for calculating 7(4) is as follows:
(1) for all modal formulas 0 C(p), one has (with *7” for true):

oC(T) « oC@C(TY)

(I) for recursions p = ¢(p) = BluC(p)], where B = Blr, §]is a p-
free modal formula with one formula OC(p) substituted for », the
solution is:

p(BIT)).

(Il for recursions p + ¢(p) = B[O Cl(p) , DG (p)), solutions are
obtained by iterated application of I1, using auxmary proposition letters.

EXAMPLE. For the above example (1) (section 5.2), one gets:
Acc » (A A D1 Acc) V (1A A 101 Acc);

with B=(4 Ar)V (A Ar)
C="14cc.
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Then, B[T]=(AAT)V (A AT)* A,
BB[T])=(A A O1A)V (TA A 1E1A)

is the eventual sclution.

It is enlightening to check this solution by direct semantic reasoning:
My is the class of all trees whose top node satisfies this modal
disjunction.

54. Extending the Modal Framework

But, our questions go beyond the original De Jongh-Sambin thcorem.
For, we want to admit arbitrary first-order quantifiers over prede-
cessors, not just the standard ones — witness (2) in the earlier example.
And indeed, De Jongh has shown that such an extension is possible.
(See also Smoryriski 1985.) The crucial observation here is that step ()
in the above procedure works for all quantifiers O over predecessors
of nodes x which are hereditary, in the sense that

if 0,A and Rxy, then O A (@~ Q).

Examples of such quantifiers are: “in all predecessors” (Q), “in at most
k predecessors”. Non-examples are: “in at least k predecessors”, “in
most predecessors”, (But note that, for any quantifier O, the combina~

tion 0Q is hereditary.)

CLAIM. On well-founded orders (including all finite trees), the
equivalence QT « QQT is valid at every node.

Proof. Suppose that QT holds at x. Then QT holds at all prede-
cessors y of x (Heredity). So, on predecessors of ¥, QT and just T
define the same set. Therefore, substitution yields QQT at x ( being a
quantifier over predecessors).

Next, suppose that 1 QT at x. Let y be R-minimal in the non-empty
set consisting of x and all its predecessors where QT fails. Thus, 7 or
and 0 OT hold at y. Again by substitution, then, 7QQOT holds at y. By
Heredity, it follows that 7 Q0T holds at x too. M

Now, arbitrary first-order quantifiers have Boolean definitions in terms
of at most k (not); and these will be covered by step (II) of the fixed-
point algorithm, just as before.
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EXAMPLE. By this method, a solution may be obtained for the eatfier
{2)-recursion:

Acc » (A N DAcc) V (TA A D1 Ace)

(with ‘@ expressing in exactly ore predecessor).
The corresponding explicit condition is this:

(HA A DAYV (AA B4 A DAY A 10(1A A DAY

Again, it 1s useful to check this solution independently.

Finally, to solve our original problem in its full generality, a multipie
fixed-point solution is required to the set of equations, Again, 2
relatively simple iteration of the one-line case turns out to work here
(an observation due to Boolos), and so we have our desired result:

THEOREM. Acyclic finite state tree automata recognize first-order
propecties of tree order and node-fealures.

5.5. Further Extensions, and Limitaiions

The preceding result by no means exhausts all questions in this area.
For instance, one would like to ‘determine the exact range of the
Fixed-Point Theorem. It breaks down, for instance, for non-hereditary
quantifiers, such as in most predecessors (u).

EXAMPLE (De Jongh): There is no solution to the equation

p = up

in its own language. For, on the frame (N, >), this defines the subset p

= all even numbers (letting x4 be false at 0). But, the latter set is not
definableusingonly 4, 7, L,1, A, B

The same example shows that allowing first-order quantification in a
language allowing -(unlike the modal one) explicit reference to R, can
also block the fixed-point result. To see this, consider the equation
{with R* as in Section 4.1)

Px « 3p(R¥xy A Py,

which has the same effect on (N, > ),
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But, the even numbers are not purely first-order R, = —definable in
this structure.

From the present point of view, a more urgent question is the
behaviour of other finite state computable quantifiers in the Fixed-Point
Theorem. For instance, consider ar even number of predecessors (€).

EXAMPLE. The equation p < € p describes the set p of all finite
trees whose top node has an even number of immediate predecessors.

First, consider any tree whose top node has an even number of
immediate predecessors, say 2#; with k nodes validating p, and 2n — k
not-p.

Casei: k is even,

Then, the total number of ‘p-nodes’ under the top must be even, being a
sum of: k p-nodes (even) + a k-sum of their underlying p-nodes (in
each case, an even number) + a (2# — k)-sum (again, an even number)
of underlying p-nodes (in each case, an odd number). All three
summands are even.

Case ii: k is odd.

This time, the summands become: odd + even (odd sum of even
contributions) + odd (odd sum of odd contributions), again an even
total,

On the other hand, if the top node has an odd number of immediate
predecessors, a similar count will always find an odd numbers of p-
nodes underneath. So, by the above equation, p will always be true in
the first type of tree, and never in the second. H

Note that this argument (uniike the earlier ones) depends on our using
finite trees, rather than mere finite acyclic graphs. Moreover, it does not
produce a fixed-point solution in the obvious language.

EXAMPLE, On the structure (N, >), the equation p < € p defines
the subset p = {0} (by the preceding characterization). But, no formula
in the language €, 7, L, 71, A defines this singleton set. (Every non-
contradictory formula in this formalism defines a subset of N closed
under at least one ‘period’ 27)
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Still, the above fixed-points are definable in languages relatively
close to the sparsest € -formalism. For instance, adding simple mod-
alities gives [0} as the extension of the modal formula 0 1 . And the
above general fixed-point is definable as ‘€#7" where ‘&* is the
variant of € with respect to immediate successors only. _

So, there remains a general question, Can all finite tree recursions

employing arbitrary finite state quantifiers over predecessors always be
solved explicitly in this same formalism?

5.6. A General Fixed-Point

To conclude, here is another perspective on the definability of fixed-
points (again due to De Jongh).

Let O be an arbitrary quantifier over predecessors. Let 0 be the
(fixed) truth value for statements Q¢ in end-points, In terms of the
latter, there are at least ‘local’ solutions to our leading question:

THEOREM: On trees of depth < n, the equation p + Qp has the
solution p=QQ™™,

Proof. By induection on . In end-points, Q¢ < Qy holds for all
@, 1, and hence in particular Q*™ « QQ®, This takes care of the case
n = 0. Next, for depth n + 1, the crucial step is this. Q"*'Q" <

QQrQ™ « QEO"Q™ (by the inductive hypothesis, and the fact that
all predecessors lie in trees of depth € n) = QQ7*'Q™. A

Such local solutions can be wrong in general.

Eg., in the earlier example of not most on the natural numbers
(Section 5.5), Q™ = T, and the iteration Q'Q™ = —uT indeed
defines p at level 1 (ie., on {0, 1}). It fails already at level 2, however,
where the point 2 verifies p as well as uT. (But, at this level, g 12T
still works; etcetera.)

Now, a general solution to the equation p + Qp may be defined as
follows: p = Q¥, where Q¥ is true at a node x iff Q40 is true at X.
(Here, d{x) is the depth of x, being the maximum length of a branch
leading from x to some end-point.)

Thus, the question in earlier sections may be rephrased as follows. In

which languages for defining quantifiers Q, does O* have an explicit
definition?
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6. COMPUTABLE PROPERTIES OF TREES
6.1. Recognizing Modal First-Order Properiies

The general extent of finite state computability on finite trees was found
early in Section 5.1: all computable properties must be (monadic) zh

The obvious converse question then becomes if all properties
definable in the latter language are computable. (This is a tree-analogue
of a question concerning finite state automata operating on linear
sequences of symbols found already in Biichi 1960, a pioneering paper
in the area of automata and logic.) No solution to this problem will be
found here, We shall only consider a special case, viz. that of first-order
sentences in the tree order R and the feature predicates A.

The obvious approach here is an inductive one, looking at simple
computable cases (R, A, x) (where ‘x” denotes the top node of the
tree), and then generating more complex cascs. What can be recognized
is first: (I) the atomic case & = Ax.

The automaton is this:

o+ 0*
Q Q
0 1
O O
1% 1*
with an entry convention “A —~ 1, 1A — 0" (1 is an accepting state.)
Then, there is closure under
(IT) negations 1 7w (x)
(by interchanging accepting and rejecting states), as well as

(I) conjunctions m,(x) A 7(X)
(computed by a suitable product automaton).

(IV) Finally, there is a computable form of restricted quantification
over predecessors of x (where ( is any finite state computable
quantifier in the sense of Section 2).

Proof Let M compute r(x), and M, Q. The following machine will
compute the condition

Q{y|Rxy}{y|Rxy A m(¥)}.
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Form new states (s, i) of states s for M and i for Mp. The new
transitions will be of the following form:

state: symbaol read: new staie:
L AN u, k

Here, the new symbols consist of state markers for states of M, plus
truth values j = @ or 1 — encoding rejection or acceptance by My so
far, (This is one instance of the greater liberality as regards output
atlowed in Section 4.2.) Then, the transition convention is this:

~ wisthe state that M gets info from s by reading /%, )
— k is the state that M, gets into from i by reading a symbol b (il 1
was accepting in M), or a (if ¢ was rejecting in M ).

Thus, M, M, work together — M, processing the outcomes of M.
Accepting states will be those having an accepting M,,-component. B

The resulting restricted formalism is reminiscent (again) of that of

modal logic (when transeribed into first-order predicate logic; cf. van
Benthem 1984a), We have proved, amongst others:

THEOREM. A#l modal first-order properties of trees are finite-stafe
compufable,

Still, this result is by no means the best possible. For instance, ‘uPWﬂrq'
directed’ properties can be computed too, such as ‘every A-node s
dominated by at least one B-node’ (see Section 6.2), Another case In
point are the single trees: their categorical descriptions in the matching
first-order language are all computable (using different state labels for
distinct subtrees). In fact, here isa

Confecture: All first-order properties of trees are finite state com-
putabie,

6.2. Second Thoughis

The preceding analysis needs one important qualification. The proof of
the main theorem was neutral between the two earlier formats: ‘inspect-
ing all predecessors’ versus ‘inspecting all immediate predecessors’.
But, definability in general is affected by this, witness the following

EXAMPLE. Tocompute Yx(Ax - 3y(Ryr A By)).
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In the immediate predecessor format, this upward-looking property
can be recognized in an obvious way, using three states:

— accept; (innodes 1A, B, regardless of what lies underneath)

— accept, (in nodes 114, 1B, with all immediate predecessors having
either accept, or accept,)

— reject  (in all other nodes, including all those carrying feature A).

But, this procedure does not work when surveying all predecessors
(compare ‘accepty). In fact, then, the above property is not computable
at alll

Proof, Suppose that finite-state machine M computed it. Consider
the family of trees 7;:

A, B(x)

|

M4, B(y)

A,18(z) A, 1B (z)

Each of these has the above property, and will therefore be accepted by
M. Now, M’s computation produces identical states on all bottom
nodes z; (1 < j < i), but perhaps varying ones for y, x (depending on
1) In any case, only finitely many will be available for y — so, for some
i, & with §, < &4, M will reach the same state on y, when processing
T, T, But then, compare T, with the tree T obtained from it by
severmg ¥'s links with z; ., . .. » Ziy (The latter are still connected with
the top node x.) When processmg 7', M will assign identical states
below x as in 7, — and hence, it must also treat x identically in both
cases, Le., T’ will be recognized: even though it lacks the above first-
order property. M

In fact, similar problems arise with ‘downward-directed’ modal proper-
ties, such as

Vx(Ax — dy(R*xy A By))y

which cannot be computed on the latter option either. Qur conjecture
is that this is an asymmetric affair; everything computable on the
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‘arbitrary predecessor’ option is also computable on the ‘immediate
predecessar’ option; but not vice versa,

This observation emphasizes the independent interest of our origir.lal
machines, Therefore, it is worth-while exploring the earlier ﬁxed~p9mt
theory (see Sections 5.3—5.6) for this case too, in some appropriate
formalism,

For instance, the general fixed-point solution of Section 5.6 works
here as well (as its proof was neutral between the two options),

Again, the local solutions obtained there can be incorrect in general.

EXAMPLE. Consider Q = 9%’ on (N, >), with the equation
pQp
i 2 1 9

-+ - — —

+ - + -ip

Eg., until depth 2, Q2Q*™ = 31131 L (= I¥ L) is a correct definition
of p: but at level 3, it fails. (What works there, however, is indeed
QJand = Jy3 T)

Of course, with the other option, p would have been globally
definable, viz. by p <+ ~8 1. Such uniform solutions are very scarce on
the present option — arising only in special cases (such as ¢ =3 or ¥).
Therefore, it becomes of interest to also have more local versions of the
De Jongh-Sambin Theorem — and these do exist:

PROPOSITION, Let A(p) = B(Qp), with the only occurrences of p as
indicated,

Define C = (BQ)™. On trees of depth < n, one has the equivalence
A'C = AA"C.

The proof is similar to that of the Theorem in Section 5.6. One can
check this outcome with the above cases.

Finally, these results can also be studied on non-well-founded struc-
tures. The difficulty, there, is that the above equations do not have
unique solutions, e.g., once loops are admitted. But, options can still be
explored systematically, (Compare the unraveling of ‘guarded’ systems

of recursion equations in Process Algebra; ¢f. Milner 1980, Bergstra &
Klop 1984.) This topic will not be pursued here.
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7. AUTOMATA IN OTHER CATEGORIES

As all compound types in a categorial language may be regarded as
denoting semantic functions, it might be possible to develop one
general perspective on automata computing these, But, if such an
enterprise is to be worthwhile, there should be some additional
examples of aftractive machine models for specific types of expression.
We discuss a few cases.

First, in addition to ‘relational’ types, such as with the earlier
quantifiers, also more ‘operational’ types from natural language should
be considered, such as with connectives or adjectives. Here, automata
will act most naturally as transducers rather than mere recognizers. In
the simplest case, such a transducer will not change its input, but
merely select items from it,

EXAMPLE. Anautomaton for computing not:

E

e v a 0 passitem just read
® 0 N 0 drop item just read

In fact, all earlier finite state automata can also be re-interpreted as
devices for computing operations.

EXAMPLE. The automaton for a/l (Section 1) will pass precisely ali
items b, up till the first a encountered. That for an even number
(Section 2) will pass every second b, together with alternate intervals of
a’s,

So, permutation-invariant recognizers need not turn into order-
indifferent transducers, with a yield independent of the order of
presentation of individuals, The latter will require the following, for
every symbol a:

either, all g-arrows end in a passing statc ®
or, all g-arrows end in a blocking state O.

It follows that order-indifferent operations are few, as only two states
will be involved. Among the connectives, this leaves just the Boolean
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polynomials. (This was to be expected, as order indifference is an
analogon of the earlier Condition of Quantity for operations: cf. van
Benthem 1985a.)

This restriction to what might be called logical items in various
categories is not unreasonable. These are the more ‘theoretical” expres-
sions, whose degrees of complexity are worth studying by formal
means. (Other examples would be ‘formai® operations modifying num-
bers of arguments in predicates, etcetera.) But obviously, it would nat
be reasonable to expect an automata hierarchy for, say, adjectives or
adverbs, whose meaning is dependent on lexical content.

In line with the earlier treatment of quantifiers, two directions of
extension are open now. One is to consider more complex autorndta.
For instance, a transducer with a push-down store could pick up iteu}s
and replace them somewhere else, thus rearranging input patterns. It is
nat quite clear if such facilities are needed for natural language
meanings. Another direction leads to more complex data. As in Section
4, operations will have to work, not just on flat sequences of objects
presented, but also (at least) on tree — or graph-like patterns.

One example would be that of computing R-maximal items in a
certain set A, say, when determining the extension of the superlative A~
est, given some underlying comparative order A-er. The tree automaton
of Section 1 would now have to drop nodes lacking the feature A,
while, upon arrival at an A-node, dropping its predecessors altogether.
Again, all earlier tree-recognizers can be used as tree-transducers t00.

A more complex case of a tree operation is provided (curiously} by
the positive adjectives underlying the above superlatives. For instance,
there is a recurrent proposal to the effect that a measure adjective like
“tall” applies to precisely those items in the “taller"-tree which have
more predecessors than successors (in the upward order). (Thus, the
reading proposed is “taller than most”.) Computing this property goes
beyond the earlier resources; one must not only ook back’, when
climbing the tree, but also ook ahead’. In fact, this problem would
already arise with linear sequences. In the simplest case, how is 4
machine {o operate on a sequence, leaving only those items beyond its
mid-point? No finite state machine can do this, and even a push-down
store automaton seems inadequate: as back-and-forth movement seems
required along the sequence surveyed. So, are we forced to cross the
boundary to full Turing machine action after all?

The preceding conclusion may be somewhat premature, as one
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important issue has been left implicit, viz. the representation of the data
fed to the procedure associated with a linguistic expression, There is a
matter of ‘division of labour’ here, which can affect judgements of
complexity. For instance, another way of computing the above sense of
“tall” would be this. Given any individual x and a “taller”-order, we can
form the two sets { y| x taller than y} and {y|y taller than x}, and then
use an ordinary most-automaton (as in Section 3) to compare their
cardinalities.

The point of the present approach is not so much to support one
particular analysis here, as to make such issues of representation and
complexity amenable to systematic analysis.

8, REALISTIC AUTOMATA

The introduction of automata into semantics carries the promise of
making semantic sense of questions of actual mental processing and
learnability of natural language. Of course, it is not clear a priori that
the present approach will be less controversial here than it has been in
mathematical linguistics in general. But, it is worth speculating about
some more realistic interpretations, or modifications of our framework,

8.1. Computability

For instance, how plausible are the earlier machines as models of
processing expressions? Already with finite state machines, there is the
problem to find some significance for the states. In computational
practice, these might encode instruction labels of some program being
executed, But, this does not seem quite plausible in our case, Let us try
something simple and direct,

In line with common psychological assumptions, we postulate a fixed
finite working memory, together with a facility for reading new symbols.
Now, there may be various actions allowed here. A totally ‘passive’
reader would only store new symbols (losing the bottom-most one
stored), a somewhat more active one could decide whether or not to
store (depending on the symbol and current memory-contents), and
eventually, more drastic rewriting of memory-contents is possible too.
Finally, in all cases, acceptance/rejection conventions could be based
on current memory-contents as well. This perspective turns out to
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throw some additional light on the earlier finite state autorata (Section
2).

EXAMPLE. Computing with a one-place memory; on an alphabet
{a, b}. In this case, there are three possible memory-contents (‘states’),
viz. | ], [al, [B]. Of these, [ ] is the obvious initial state; where any of
the three can be accepting/rejecting. ‘To compute, e.g., a/l, one makes
the stipulation of the following diagram

¥ ‘a
)l 2 L et

Op [a]: reject
3

To compute, e.g., an even rumber, one needs,

Y b
11218 [ }: accept
b

3 S {b]: Teject
a a

Note that the latter machine rewrites memory-contents.
Some further analysis of these examples shows that

0] the one-place memory case yields only two-state computable
quantifiers,

(ii) all first-order quantifiers are computable without rewriting
of memory,

(i)  with the latter facility, recognizing power is exactly that of

finite state automata (encoding states as memory-contents,
and vice versa).

The next reasonable enrichment of this scheme is to add a long-fenmn
memory, potentially unbounded, to the short-term one, with (restricted)
facilities for transfer between the two. Then, eg, the proportions of
Section 3 become computable, within tight constraints.

EXAMPLE. Computing at least two-thirds,
A two-symbol short-term memory is required, with the obvious

transfer to the long-term memory (push-down store). Rewriting is only
allowed in the short-term memory as follows:
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symbol read:  short-term memory: action:

a aa, —da, ~ store g in short-term memory
bb empty short-term memory
ab store & in short-term memory

in left-most position

~b rewrite to ab

b bb, ~b, — store in short-term memory
aa, —a store b in short-term memory

in right-most position
ab empty short-~term memory

What will happen here is this. At each stage, there will be a homogene-
ous stack of either all 4 or all b, with a working memory containing
(perhaps) occurrences of the other symbol as well. The crucial transi-
tion is that where one symbol @ ‘neutralizes’ two symbols b, By a simple
argument, it foliows that there are at least two-thirds occurrences of b
in the sequence read if and only if the short-term memory registers one
of the following:

bb, —b, —

Therefore, these may be chosen as the accepting 'states’ for the
procedure.

All procedures of this kind can be simulated by push-down store
automata. The converse is probably false, in view of our lack of states,
and the restrictions on rewriting.

Perhaps the most important ‘realistic’ difference with the usual push-
down store automata has to do with a feature not discussed up tili now.
The above automata are deterministic; whereas non-determinism is
crucial to push-down store automata as usually employed (e.g. in getting
all context-free languages recognized). From a realistic point of view,
there are good reasons for studying deterministic subcases — a restric-
tion, moreover, which seems in line with our ideas about actual
quantifier expressions in this range.

E.g., all the continuous bi-lincar quantifiers, isolated in Section 3, are
deterministically computable in the above sense.

Still, there may be psychological arguments for allowing a certain
amount of non-determinism after all in our account of semantic com-
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petence. For instance, categorial semanticists are fond of the metapher
of understanding a sentence as fitting together a jigsaw-puzzle. As those
who have experience with such puzzles can testify, competence here
often consists in applying a judicious blend of deterministic fitt.ing_, of
obviously matching pieces, and random fitting, in cases with little

contrast. The latter ‘stupid’ procedure can actually be a lot faster than
an over-all deterministic sotution!

8.2. Learnability

The preceding discussion revolved around the issue of complexity: v‘vhat
is ‘easy to compute’. What about the companton topic of learnabilily:
what is ‘easy to learn’? Perhaps, an answer to the first implies an answer
to the second: ‘less complex procedures are easier to learn’, (But, what
about a simple Turing machine instruction versus, say, one hundl:ed
pages of regular rewrite rules?) At the present stage, alternative
approaches may be just as plausible, stressing various aspects of the
learning process itself. (See Section 9 for some further speculation.)

Moreover, an issue which would have to return in this setting is the
choice of representations, 10 do our computations on. Obviously, much
learning consists in finding the most informative representations of
knowledge to cope with the world. (Perhaps, these are even chosen
50 as to minimize computation) In connection with this issue, the
approach taken in this paper could also be developed, not on extra-
linguistic madels, but, say, on discourse representation structures.

Finally, successful learning implies the ability both to recognize and
to produce situations of the kind which was studied. In mathematical
linguistics, this duality between recognition and generation has been
studied extensively. It also makes sense in semantics, however, which
knows varigus systematic methods of model construction (such as
‘semantic tableaus' and the like).

So, computational semantics has a full agenda for research.

9. APPENDIX ON LEARNING THEORY

This section is a discussion as to how learnability of semantic meanings

can be treated mathematically, in the spirit of this paper. The guiding

idea here caomes from Osherson and Weinstein 1986 (even though the
direction taken is different eventually).
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As a learning model, suppose that one learns the meaning of some
linguistic expression by being presented with situations where it holds,
and situations where it fails. On the basis of these examples, perhaps
acquired in childhood, one hypothesizes some uniform meaning, which
is then used subsequently (subject to revision by further examples): If
this process is regular, it comes in the form of some learning function,
producing a hypothesis, for every finite sequence of data, about the
general meaning behind these. If all works well, this function should, for
each of the types of expression that we are interested in, produce the
correct hypothesis after having seen some finite segment of its semantic
behaviour.

There are still many mathematical options in this outline, which are
explored in detail in Osherson, Stob and Weinstein 1986. (The model
itself dates back to work by Gold in the sixties, however.) Their main
concern is with language learning in a more syntactic sense (with
grammars being hypothesized) ~- but many of their points are of such a
general recursion-theoretic nature that they fit a wide range of other
cases (including the present). For instance, what can be ‘learnt’ success-
fully depends on such assumptions on the data as the following:

-~ does one see only positive instances of the notion to be learnt or
both positive and negative ones (as suggested above)?

— does the order in which data are received matter/and likewise,
repetitions of data?

Moreover, answers will depend on assumptions about the (complexity
of the) learning function: which could be computed by a Turing
machine, but also by simpler devices. And finally, there is also a variety
of outcomes associated with different requirements on the quality of
recognition. E.g., should the learning function also reject, or at least, fail
to identify correctly, every sequence of data for meanings not in our
intended class?

Evidently, there is a wide variety of questions here — going from
proposed learning functions to classes of languages/meanings recog-
nized, as well as vice versa, One interesting line is to start from natural
assumptions about human learning functions, and then locate the
induced constraints on ‘natural languages/meanings’ that can be
humanly learnt,

In this appendix, we look only at a very simple special case — so
special, that some of the central tools in the general analysis (such as
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the Blum & Blum Lemma') do not apply. Even so, some interesting
connections emerge with our previous topics.

Let us restrict attention to learning quantifiers — the data being
progressive information about their true/false patterns in the Tree of
Numbers {¢f. van Benthem 1984b). Thus, both positive and negative
information is provided. Moreover, let us assume that information
about smailer situations will, on the whole, precede informaticn about
larges ones — resulfing in the idealization that we are being fed the tree
pattern line by line, starting from the top. In fact, knowing this fixed

enumeration, having only the positive cases for a quantifier Q auto-
matically supplies the negative ones.

EXAMPLE. (Tree pattern for a//): The Tree of Numbets represented
all possible configurations a, b witha =|A — B|,b=|A N B|,fora
quantifier QAB:

l4l=0 0,0

1 10 6,0

2 20 1.1 0,2

3 3,0 2,1 1,2 0,3

etcetera,
E.g, the pattern for a/l is this (with + for YES, — for NO).
+
- +

This will come out as the following learning sequence”

+’.__’+’_.,.—...,+,_ — “:+;---

T ¥

In the most general case, a learning function will now be any map f
assigning quantifiers (or, suitable names for these) to finite sequences of
YES/NO answers to successive nodes in the Tree.

As there are only countably many such finite sequences, f will
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identify at most countably many quantifiers. But also conversely, for -
any countable class of quantifiers X = {Q;, Q,, ...}, there is some
learning function fy identifying it, via the following rule:

‘for any sequence €, f(€) is the first ; in the
enumeration whose Tree pattern is consistent with €;
fy 15 undefined it no such {; exists’.

Thus, exactly the countable classes of quantifiers are learnable by
unrestricted (possibly partial) learning functions, Note that the above
learning function is prudent: every temporary hypothesis is consistent
with the data so far, This feature will be assumed henceforth,

To create more structure, one may plausibly require that learnable
families be recursively enumerable sets of quantifiers which are
decidable on finite models. In that case, the above learning function
becomes (general) recursive. Actually, for this conclusion, it suffices to
assume that all quantifiers to be learnt have RE patterns of accepted
nodes. (To compute fy(€), one then starts enumerating all Qj-ranges
in the usual diagonal way: picking the first to embrace € ) A converse
holds too. If f is recursive, then its range, on some effective enumera-
tion of the finite sequences, will be RE, Moreover, for each of the
quantifiers occurring here (in encoded form), its class of accepted
nodes may also be enumerated effectively. (Compute f in ever
increasing depth, over ever increasing finite sets of sequence arguments
— using the fact that node x belongs to (; iff f assigns (); to some
sequence € having YES at its x-position. (Prudence is needed here.))
There are further possible refinements — but, the above will suffice for
a general impression,

Now, let us consider some fine-structure of learning functions, by
bringing in the earlier hierarchy of automata, For instance, the simplest
kind of learning device would be a finite state machine, whose states
represent some finite number of possible conjectures.

EXAMPLE 1. The afl machine of Section 1. Let the accepting state
represent the universal quantifier (true everywhere), and the rejecting
state its negation. Then, the machine correctly identifics this family
{0, G,}. But, it will also produce incorrect identifications outside of
this family (for, the pattern for any quantifier other than Q) will receive
Q, eventually). An alternative would be to let the rejecting state
represent “No Hypothesis”. Then, { @, } would be uniquely identified.
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EXAMPLE 2. The even number machine of Section 2.2. Here, the
same multiplicity arises. E.g., with the accepting state representing some
hypothesis 2, the latter will be assigned to any quantifier pattern

consisting of some finite even number of YES-markers, distributed
arbitrarily in the Tree of Numbers,

What these examples suggest is that permutation-invariance is not
desirable now (unlike in Section 2.1): the order of data is important.
Moreover, we have changed to recognizing infinife sequences: an area
with its own peculiarities (cf. van Benthem 1984b). And most impor-
tantly, automata now operate one level higher up, so to speak: whici
should make one beware of apparent analogies.

This shows even more when we reverse the question, Consider the
Tree pattern for the quantifier a//, whose learning sequence was already
given in an earlier example.

What kind of automaton will recognize exactly this sequence? It
turns out that a push-down automaton is needed, which alternatively
stores and erases the sequences of — (NQ) markers, making sure that
the next one is exactly one longer than the preceding one. In its most
obvious form, this requires iwo stacks (one for comparing, one for
tallying). But, push-down store automata with two stacks have Turing
Machine power: and we have arrived at the most complex case after all.

So, what would be the proper notion of computational fine structure
here? For instance, one would still like to say that ali first-order
quantifiers are of roughly the same complexity as the above example.
(Consider their Fraissé thresholds (van Benthem 1984b): in the corre-
sponding learning sequence, the crux will always be to recognize
one-step growih of some interval of — or + in a fixed environment.) On
the other hand, e.g., the higher-order case of most requires the use of

more than two stacks (intuitively speaking), when checking its learning
sequence

()=t ——t— =t m b b

Finally, the above automata can also be used to identify classes of
quantifiers. For instance, when automata are given identifying the single

quantifiers ©Qy, ..., {, uniquely, then {Q,, ..., @Q,} can aiso be
recognized as follows:;
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First, follow sequences until the first depth where all differences
between Q,, ..., O, have shown: this can be registered in some initial
finite state part. Then continue the final states reached in this way with
the appropriate automata M (Q,), . .., M (Q,).

The preceding discussion underscores the difference between our two
levels of using automata: as learning machines or as semantic proce-
dures hypothesized by the former. For instance, computing a first-order
quantifier may be of finite state complexity — while learning that one
is dealing with this particular quantifier may be an essentially more
complex problem of pattern recognition. Even so, the question remains
which connections exist between the internal mechanism of a learning
machine and the structure of its conjectures,

For instance, can a learning machine recognize if a given learning
sequence corresponds to a finite state computable quantifier — and if
so, identify which one?

By .an earlier general result, the answer is positive — as this is
a recursively enumerable class of decidable sets. But, the learning
function given in the proof was highly abstract, On the other hand,
scientists engaged in pattern recognition seem to predict behaviour with
great certainty, after having seen only a few evolutions in, say, the
computer simulation of a cellular automaton (cf. Wolfram 1984). But
then, in such a case, the learning task is rather this: essuming that some
simple system lies behind the observed evolution, identify which one.

The latter perspective raises questions of speed of recognition. E.g., if
we know that a given set of sequences is produced by some N-state
finite state machine, then there exists some finite length before which all
differences between the finitely many possibilities must have shown
already. Can this length be estimated?

In general, the obvious conjecture (being N itself) does not work:

EXAMPLE (1 symbol, 3 states):
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Machine I recognizes: { ), a, 43, a*, ..., while machine II recogizes
3 45
{ ha,d% 8. ..

PROPOSITION, If rwo finite automata with at most N states each
recognize different languages; then they differ already on some string of
length at most 2N,

Proof. In Arbib 1969, Chapter 3, item 32, it is shown that any two
non-equivalent states in an N-state finite automaton can be told apart
by feeding in some string of length at most N. Now, consider our two

finite automata as one (2N-state) joint automaton, and the assertion
follows, H

We can specialize this result to the earlier case of binary quantifiers.
Recall how machine states show in the Tree representation of a
quantifier (cf. van Benthem 1986): as nodes generating identical
downward subtrees. If only finitely many types of subtree occur, then ()
is computable by some finite state machine,

PROPOSITION. ¥f Q is computable by a finite N-state machine, then
all ifs states will have occurred already in the upper triangle of depth N.

Proof, This follows from the following claim: if only m types occur
(rm < NYin the top triangle of depth N+ 1, then only m types ocenr
in the whole Tree. The argument is by induction on N,

— N = 1.1f the top pattern is like this: {, t‘zl, then the whole Tree
has pattern #, (as ¢ ‘propagates’).

~— N+1 - N+2. Case i: The top triangle with depth ¥ -+ 1
contains occurrences of only m types, with m < n. By the inductive
hypothesis, only m types occur altogether, Case i That triangle
contains occurrences of N+ 1 types. But then, in the N + 2-uriangle,
every occurring type has two immediate successor nodes with types
from among these N -+ 1 possibilities. So, again by propagation, the

whole Tree pattern is fixed in the downward direction, displaying only
these N+ 1types, W

REMARK. The same result could be proved less pictorially (but
faster) by means of the Pumping Lemma for regular languages.

Now by developing the Tree with depth 2, the earlier identification
method can be applied.
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EXAMPLE. Consider the following Tree-pattern for a 4-state finite
state quantifier

+ —
+ — —
4+ - + -
leveld + -  + - -
+ - + - + -
+ - + - + — —
+ - + - =+ - + —
etcetera

For the initial part of the diagram, take the upper triangle itself

¥
28
YN /\*
LN N N
1 2 3 4

It remains to find transition arrows on the final row.
By comparing generated downward subtrees of depth 4, one can
complete this now, e.g., as follows:

1 2 3 a4

o o) 5 b O ———2 %
Oa b Oa Oa b
This may be simplified to the equivalent 4-state machine:

Q:‘I Qa

:>O———>O

e

o
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The corresponding quantifier is (‘at least one #, and an even number of
b"):

QABiff A — B # ®and A N B has even cardinality.

Another way of thinking about these temporary conjectures is via the
Nerode Representation of regular languages (see Section 2.1). A
Nerode-Learner could act as follows, in the above setting. At each
stage, it knows some finite set A of outcomes for Q — and it can make
guesses as to its automaton by identifying tree nodes if these are not
O-distinguishable by continuations within A. Moreover, there are
obvious @, b transition functions. (Actually, one must be somewhat
more careful, creating different approximations for fixed ‘comparison
depths’y Now, provided that some finite state automaton lies behind
the observed Q-pattern, the Nerode learner will arrive at a stable
conjecture sooner or later, By way of contrast, compare its continuing
oscillations on the non-finite state quantifier “exactly half”, which
accepts only Tree nodes x, x. It would be of interest to have similar
generators of conjectures for push-down computable quantifiers too, In
fact, a very rapid change in finite state estimates would probably force
us to postulate some higher automaton at work. What kind of decision
mechanism would describe this?

Of course, this model of learning and hypothesizing is still rather
crude. See e.g. Winston 1984, Charniak and McDermott 1985 for more

sophisticated accounts of learning grammars — which might be adapted
to the present semantic concerns.
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