MUDDY CHILDREN PLAYGROUND

Nina Gierasimczuk Jakub Szymanik

Institute for Logic, Language and Computation, University of Amsterdam

Department of Philosophy, Stockholm University

LoRI @ ESSLLI'10

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 1 / 27

イロト イポト イヨト イヨト

2 Epistemic power of various quantifiers

3 Epistemic models based on number triangle

BRIEF DISCUSSION

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 2 / 27

ヨトイヨト

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 3/27

900

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- At least one of you has mud on your forehead.
- Can you tell whether or not you are muddy?

Repeating the question makes children know the answer.

Gierasimczuk, Szymanik (ILLC, SU)

э

イロト イポト イヨト イヨト

General form:

'Q of you have mud on your forehead',

where Q is a generalized quantifier.

∃ ► < ∃ ►</p>

$$M=(U,A)$$

After the announcement:

$$\{M: M \models \mathsf{Q}_U(A)\}$$

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 6 / 27

DQC

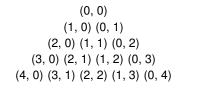
<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

EXAMPLE

$$\exists = \{ (U, A) : A \subseteq U \& A \neq \emptyset \}$$
$$\mathsf{D}_{\mathsf{n}} = \{ (U, A) : A \subseteq U \& card(A) = k \times n \}$$
$$\mathsf{most} = \{ (U, A) : A \subseteq U \& card(A) > card(U - A) \}$$

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground


LoRI @ ESSLLI'10 7 / 27

æ

DQC

イロト イヨト イヨト イヨト

Viewing finite models as pairs of integers.

4 A 1

Extensively studied in GQT.

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 8 / 27

★ ∃ > < ∃ >

2 EPISTEMIC POWER OF VARIOUS QUANTIFIERS

3 Epistemic models based on number triangle

BRIEF DISCUSSION

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 9 / 27

ヨト・ヨト

General form:

'Q of you have mud on your forehead',

where Q is a generalized quantifier.

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 10 / 27

∃ ► < ∃ ►</p>

4 D b 4 A b

'At least one' and 'At least two'

	0	1	2	3	4		0	1	2	3	4
1	Х	1	Х	Х	Х	1	Х	Х	Х	Х	Х
2	Х	1	2	Х	Х	2	Х	Х	1	Х	Х
3	Х	1	2	3	Х	3	Х	Х	1	2	Х
4	Х	1	2	3	4	4	Х	Х	1	2	3
5	Х	1	2	3	4	5	Х	Х	1	2	3
6	Х	1	2	3	× × 4 4 4 4 …	6	Х	Х	1	2	x x 3 3 3

э

Sac

イロト イポト イヨト イヨト

'Even' and 'Most'

	0	1	2	3	4		0	1	2	3	4	5
1	1	Х	1	Х	1	1	Х	1	Х	Х	Х	Х
2	1	Х	1	Х	1	2	Х	X	1	X	X	X
3	1	Х	1	Х	1	3	Х	Х	1	2	Х	Х
4	1	Х	1	Х	1	4	Х	Х	Х	1	2	Х
5	1	Х	1	Х	1	5	Х	Х	Х	1	2	3
6	1	Х	1	Х	1 1 1 1 1 1	6	Х	Х	Х	Х	1	x x 3 2

DQC

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

PROPOSITION

Assume n children, $m \le n$ muddy children. The Muddy Children Puzzle with the background assumption 'At least k of you have mud on your forehead' can be solved in m - (k - 1) steps, where $k \le m$.

In the paper we do it systematically for various Qs.

イロト イポト イヨト イヨト 二日

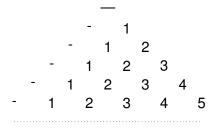
WHERE DO THOSE PATTERNS COME FROM?

'At least one' 0 1 2 3 5 4 1 1 Х Х Х Х Х 2 1 2 Х Х Х Х 3 1 2 3 Х Х Х 1 2 3 4 4 Х Х 5 1 2 3 5 4 Х 5 6 Х 1 2 3 4 . . .

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 14 / 27


э

DQC

∃ ► < ∃ ►</p>

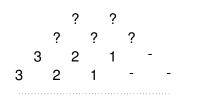
I > <
I >
I

THEY COME FROM THE QUANTIFIER ITSELF

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 15 / 27

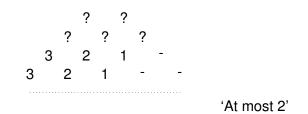

1

DQC

イロト イヨト イヨト イヨト

THEOREM

Let n be the number of children, $m \le n$ the number of muddy children, and Q be the background assumption. Muddy Children situation is solvable iff $(n - m, m) \in Q$ and there is an $l \le n$ such that $(n - l, l) \notin Q$.



'At most 2'

ㅋㅋ イヨト

OBSERVATION

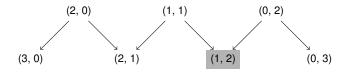
The number assigned to a point in the number triangle is the 'distance' to the closest model outside of the quantifier.

∃ ► < ∃ >

2 EPISTEMIC POWER OF VARIOUS QUANTIFIERS

3 Epistemic models based on number triangle

BRIEF DISCUSSION


Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

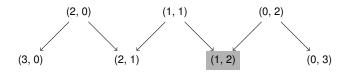
LoRI @ ESSLLI'10 18 / 27

∃ ► < ∃ ►</p>

REPRESENTATION

OBSERVATION

Every agent's observation is encoded by one of at most two neighboring states in the observational level.


Gierasimczuk, Szymanik (ILLC, SU)

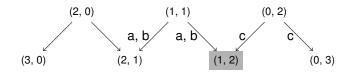
Muddy Children Playground

LoRI @ ESSLLI'10 19 / 27

Sac

イロト イポト イヨト イヨト

OBSERVATION


Every agent's observation is encoded by one of at most two neighboring states in the observational level.

Gierasimczuk, Szymanik (ILLC, SU)

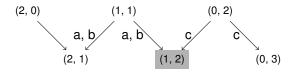
Muddy Children Playground

LoRI @ ESSLLI'10 19 / 27

・ 同 ト ・ ヨ ト ・ ヨ ト

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground


LoRI @ ESSLLI'10 20 / 27

æ

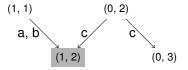
590

イロト イヨト イヨト イヨト

STEP 1: QUANTIFIER ANNOUNCEMENT

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground


LoRI @ ESSLLI'10 21 / 27

3

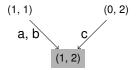
DQC

イロト イヨト イヨト イヨト

STEP 2: EPISTEMIC REASONING

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground


LoRI @ ESSLLI'10 22 / 27

æ

DQC

<ロト < 回ト < 回ト < 回ト

STEP 3: EPISTEMIC REASONING

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 23 / 27

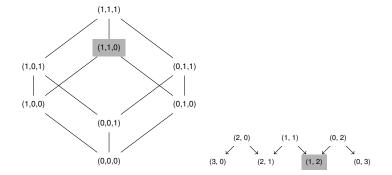
æ

DQC

イロト イヨト イヨト イヨト

2 EPISTEMIC POWER OF VARIOUS QUANTIFIERS

3 Epistemic models based on number triangle


Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 24 / 27

ヨト・ヨト

MUDDY CHILDREN MODELING DEL VS NT (COGSCI)

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 25 / 27

э

DQC

イロト イポト イヨト イヨト

Tak

Gierasimczuk, Szymanik (ILLC, SU)

Muddy Children Playground

LoRI @ ESSLLI'10 26 / 27

2

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

- Comparison with DEL-perspective.
- Isomorphism and symmetry.
- Associate our representations with automata.
- Logic for public announcements with GQs.
- Other epistemic puzzles.

∃ ► < ∃ ►</p>

4 A 1