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Finite models

All structures are assumed to be finite.

A = {{0, . . . ,m},R1, . . . ,Rr}



Collections of models

Definition
Let τ = {R1, . . . ,Rr} be a relational vocabulary, where Ri is
li -ary for 1 ≤ i ≤ r , and Q a class of τ -structures closed under
isomorphisms. The class Q gives rise to a Lindström quantifier
which we also denote by Q. The tuple s = (l1, . . . , lr ) is the type
of the quantifier Q.



Examples

∀ = {(A,P) | P = A}.
∃ = {(A,P) | P ⊆ A & P 6= ∅}.

even = {(A,P) | P ⊆ A & card(P) is even}.
most = {(A,P,S) | P,S ⊆ A & card(P ∩ S) > card(P − S)}.

M = {(A,P) | P ⊆ A and |P| > |A|/2}
some = {(A,P,S) | P,S ⊆ A & P ∩ S 6= ∅}.



Logics with Lindström quantifiers

The extension FO(Q) is defined as usual.

A |= Qx1, . . . , x r (φ1(x1), . . . , φr (x r )) iff (A, φA
1 , . . . , φ

A
r ) ∈ Q,

where φA
i = {a ∈ Ali | A |= φi(a)}



Definability

Definition
Let Q be the class of structures of type t and L a logic. We say
that Q is definable in L if there is a sentence ϕ ∈ L of
vocabulary τt such that for any τt -structure M:

M |= ϕ iff M ∈ Q.



Elementary structures

Some structures, like ∃≤3, ∃=3, and ∃≥3, are expressible in FO.

Example

some x [A(x),B(x)] ⇐⇒ ∃x [A(x) ∧ B(x)].



Definability – Intuitions

Theorem
A Q is definable in L iff L ≡ L(Q).

Example

Question
What does it mean that, e.g. even, is definable in L?
even is definable in L if there is a uniform way to express
even x ψ(x) for any formula ψ(x) in L. Over a model A, ψ(x)
defines a subset {x ∈ A | A |= ψ(x)}, so the problem is to find a
way to express its evenness for each ψ(X ).



Definability – Intuitions

Theorem
A Q is definable in L iff L ≡ L(Q).

Example

Question
What does it mean that, e.g. even, is definable in L?

even is definable in L if there is a uniform way to express
even x ψ(x) for any formula ψ(x) in L. Over a model A, ψ(x)
defines a subset {x ∈ A | A |= ψ(x)}, so the problem is to find a
way to express its evenness for each ψ(X ).



Definability – Intuitions

Theorem
A Q is definable in L iff L ≡ L(Q).

Example

Question
What does it mean that, e.g. even, is definable in L?
even is definable in L if there is a uniform way to express
even x ψ(x) for any formula ψ(x) in L. Over a model A, ψ(x)
defines a subset {x ∈ A | A |= ψ(x)}, so the problem is to find a
way to express its evenness for each ψ(X ).



Non-elementary structures

Theorem
‘most’ and ‘even’ are not first-order definable.

We can use higher-order logics:

Example
In M = (M,AM ,BM) the sentence

most x [A(x),B(x)]

is true if and only if the following condition holds:

∃f : (AM−BM) −→ (AM∩BM) such that f is injective but not surjective.
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Complexity

I Finite models can be encoded as strings.
I Classes of such finite strings are languages.

Definition
By the complexity of Q we mean the computational complexity
of the corresponding class of finite models.

Question
M ∈ Q? (equivalently M |= Q?)
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Coding

Definition
Let τ = {R1, . . . ,Rk} be a relational vocabulary and M a τ -model of the
following form: M = (U,RM

1 , . . . ,R
M
k ), where U = {1, . . . , n} is the universe

of model M and RM
i ⊆ Uni is an ni -ary relation over U, for 1 ≤ i ≤ k . We

define a binary encoding for τ -models. The code for M is a word over
{0, 1,#} of length O((card(U))c), where c is the maximal arity of the
predicates in τ (or c = 1 if there are no predicates).
The code has the following form:

ñ#R̃M
1 # . . .#R̃M

n , where:

I ñ is the part coding the universe of the model and consists of n 1s.

I R̃M
i — the code for the ni -ary relation RM

i — is an nni -bit string whose
j-th bit is 1 iff the j-th tuple in Uni (ordered lexicographically) is in RM

i .
I # is a separating symbol.



Coding Example

Consider vocabulary σ = {P,R}, where P is a unary predicate and R a
binary relation. Take the σ-model M = (M,PM ,RM), where the universe
M = {1, 2, 3}, the unary relation PM ⊆ M is equal to {2} and the binary
relation RM ⊆ M2 consists of the pairs (2, 2) and (3, 2).

I ñ consists of three 1s as there are three elements in M.
I P̃M is the string of length three with 1s in places corresponding to the

elements from M belonging to PM . Hence P̃M = 010 as PM = {2}.
I R̃M is obtained by writing down all 32 = 9 binary strings of elements

from M in lexicographical order and substituting 1 in places
corresponding to the pairs belonging to RM and 0 in all other places. As
a result R̃M = 000010010.

Adding all together the code for M is 111#010#000010010.



What amount of resources TM needs to solve a task?



Time Complexity

Let f : ω −→ ω.

Definition
TIME(f ) is the class of languages (problems) which can be
recognized by a deterministic Turing machine in time bounded
by f with respect to the length of the input.

Definition
NTIME(f ), is the class of languages L for which there exists a
non-deterministic Turing machine M such that for every x ∈ L
all branches in the computation tree of M on x are bounded by
f (n) and moreover M decides L.
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Complexity Classes P and NP

Definition

I PTIME =
⋃

k∈ω TIME(nk )

I NPTIME =
⋃

k∈ω NTIME(nk )

Definition
A language L is NP-complete if L ∈ NP and every language in
NP is reducible to L.
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Definition
Let Q be of type (1, 1). Define:

Ram(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X ) ∧ ∀x , y ∈ X (x 6= y =⇒ R(x , y))].



Goal

Q Ram(Q)



Cliques

Ram(∃≥k )[A,R] is equivalent to the following FO formula:

∃x1 . . . ∃xk

[ ∧
1≤i<j≤k

xi 6= xj ∧
∧

1≤i≤k

A(xi) ∧
∧

1≤i≤k
1≤j≤k

R(xi , xj)
]
.

Theorem
Ram(∃≥k ) is in LOGSPACE.



Counting

Definition
Let M = (M,A, . . .). We define:

M |= C≥Ax ϕ(x) ⇐⇒ card(ϕM,x ) ≥ card(A).

Theorem
Ram(C≥A) is NP-complete.



Proportionality

Definition

M |= Qq[A,B] iff
card(A ∩ B)

card(A)
≥ q, where 0 < q < 1 is a rational number.

Theorem
If 0 < q < 1, then Ram(Qq) is NP-complete.



Generalization

Given f : ω → ω, we define:

Definition
We say that a set A ⊆ U is f -large relatively to U iff

card(A) ≥ f (card(U)).

Definition
We define Rf as follows M |= Rfxy ϕ(x , y) iff there is an f -large
set A ⊆ M such that for each a,b ∈ A, M |= ϕ(a,b).

Corollary
Let f (n) = drne, for some rational number r such that 0 < r < 1.
Then Rf defines NP-complete class of finite models.



Boundness
Definition
We say that a function f is bounded if

∃m∀n[f (n) < m ∨ n −m < f (n)].

Otherwise, f is unbounded.

n

f (n)

f (n) = d
√

ne

f (n) = n

f (n) = 1
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Easy Ramsey structures

Theorem
If f is PTIME computable and bounded, then the Ramsey
quantifier Rf is PTIME computable.



More general observation

∃XQ(X ) ⇐⇒ ∀t1 . . . ∀tm∀tm+1[( ∧
1≤i<j≤m+1

X (ti ) =⇒
∨

1≤i<j≤m+1

ti = tj
)

∨
( ∧

1≤i<j≤m+1

¬X (ti ) =⇒
∨

1≤i<j≤m+1

ti = tj
)]
.

This formula says that X has a property Q if and only if X
consists of at most m elements or X differs from the universe
on at most m elements.



Open problems

Question
Are PTIME Rfs exactly bounded Rfs?

Question
For what class of functions duality holds?
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Collectivization

. . . no no, not that one.



Second-order structures

Definition
Let t = (s1, . . . , sw ), where si = (l i1, . . . , l

i
ri

) is a tuple of positive
integers for 1 ≤ i ≤ w . A second-order structure of type t is a
structure of the form (A,P1, . . . ,Pw ), where
Pi ⊆ P(Al i1)× · · · × P(Al iri ).



Collections of second-order models

Definition
A second-order generalized quantifier Q of type t is a class of
structures of type t such that Q is closed under isomorphisms.



Examples

∃2
1 = {(A,P) | P ⊆ P(A) & P 6= ∅}.

EVEN = {(A,P) | P ⊆ P(A) & card(P) is even}.
EVEN′ = {(A,P) | P ⊆ P(A) & ∀X ∈ P(card(X ) is even)}.
MOST = {(A,P,S) | P,S ⊆ P(A) & card(P ∩ S) > card(P − S)}.

MOST1 = {(A,P) | P ⊆ P(A) & card(P) > 2card(A)−1}.



FO(Q)

A |= QX 1, . . . ,X w (φ1, . . . , φw ) iff (A, φA
1 , . . . , φ

A
w ) ∈ Q,

where φA
i = {R ∈ P(Al i1)× · · · × P(Al iri ) | A |= φi(R)}.



Warning

Do not confuse:
I FO GQs (Lindström) with FO-definable quantifiers

E.g. most is FO GQs but is not FO-definable.
I SO GQs with SO-definable quantifiers

E.g. MOST is SO GQs but not SO-definable.



Goal

Q Q



Definability for second-order structures

Question
How do we formalize definability for SOGQs?

Example
∃2

1 is definable in L if there is a uniform way to express ∃2
1Xψ(X )

for any formula ψ(X ) in L. Over a model A, ψ(X ) defines a
collection of subsets {C ⊆ A | A |= ψ(C)}, so the problem is to
find a way to express its non-emptyness for each ψ(X ).
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L(G1, . . . ,Gw)

Definition
Let L be a logic, t = (s1, . . . , sw ) a second-order type, and let
G1, . . . ,Gw be first-order quantifier symbols of types s1, . . . , sw .

1. The models of L(G1, . . . ,Gw ) are of the form
A = (A,G1, . . . ,Gw ), where A is a first-order model and

Gi ⊆ P(Al i1)× · · · × P(Al iri ).

2. The quantifiers Gi are interpreted using the relations Gi :

A |= Gi x̄1, . . . , x̄ri (φ1(x̄1), . . . , φri (x̄ri ))

iff (φA1 , . . . , φ
A
ri

) ∈ Gi .



Definability—definition

Observation
If φ ∈ L(G1, . . . ,Gw ) is a sentence of vocabulary τ = ∅. Then

Mod(φ) = {(A,G1, . . . ,Gw ) | (A,G1, . . . ,Gw ) |= φ}

corresponds to a second-order generalized quantifier of type t.

Definition
Let Q be a quantifier of type t . The quantifier Q is definable in a
logic L if there is φ ∈ L(G1, . . . ,Gw ) of vocabulary σ = ∅ such
that for any t-structure (A,G1, . . . ,Gw ),

(A,G1, . . . ,Gw ) |= φ⇔ (A,G1, . . . ,Gw ) ∈ Q.



Characterizing definability—main idea

Recall, Q of type ((1)) is definable in SO if there is a sentence
φ ∈ SO(G) such that for all second-order structures (A,G):

(A,G) |= φ⇔ (A,G) ∈ Q .

We show that SO and the relation G can be replaced by FO
and a unary relation P by passing from A to a domain of
cardinality 2|A|.



First-order encoding of second-order structures

Observation

1. There is a one-to-one correspondence between integers
m ∈ B = {0, . . . ,2n − 1} and subsets of A = {0, . . . ,n− 1};

2. Relations of A can be encoded as tuples of elements of B;
3. Sets of relations of A by relations of B.



Formally

Definition
Let t = (s1, . . . , sw ) be a type where si = (1, . . . ,1) is of length
ri for 1 ≤ i ≤ w . Let A = (A,G1, . . . ,Gw ) be a t-structure where
A = {0, . . . ,n − 1} and Gi ⊆ P(A)× · · · × P(A). Denote by
Â = (B,P1, . . . ,Pw ) the following first-order structure of
vocabulary τ = {P1, . . . ,Pw}, where Pi is a ri -ary predicate,
and

1. B = {0, . . . ,2n − 1},
2. Pi = {(j1, . . . , jri ) ∈ Bri | (J1, . . . , Jri ) ∈ Gi}, where, for

1 ≤ k ≤ ri , bin(jk ) is given by s0 · · · sn−1, and
sl = 1⇔ l ∈ Jk .



Q?

Definition
For a quantifier Q of type t , we denote by Q? the first-order
quantifier of vocabulary τ defined by

Q? := {Â : A ∈ Q},

where Â is the first-order encoding of A.



Characterization

Theorem
Let Q1 and Q2 be monadic quantifiers. Then Q1 is definable in
MSO(Q2,+) if and only if Q?

1 is definable in FO(Q?
2,+,×).

Built-in addition unleashes the expressive power of MSO.
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Corollary: computational complexity

Theorem
If the quantifier MOST is definable in second-order logic, then
counting hierarchy, CH is equal polynomial hierarchy, PH.
Moreover, CH collapses to its second level.

Proof.
The logic FO(MOST) can define complete problems for each
level of the CH (Kontinen&Niemisto’06). If MOST was definable
in SO, then FO(MOST) ≤ SO and therefore SO would contain
complete problems for each level of the CH. This would imply
that CH = PH and furthermore that CH ⊆ PH ⊆ C2P.



Corollary: undefinability result

Theorem
The quantifier MOST1 is not definable in SO.

Proof.
Show that definability of MOST1 in SO implies that, for some k ,
the quantifier M is definable in FO(+,×) over cardinalities 2nk

.
Over these cardinalities, we could then express PARITY in the
logic FO(+,×). This contradicts the result of Ajtai(1983).



Outlook

Question
Un(definability) theory for SOGQs.



Summary

2 case studies motivated by the formal semantics.
1. Ramsey counting structures are NP-hard.
2. Ramsey proportional structures are NP-hard.
3. Bounded Ramsey structures are in PTIME.

Question
What is the characterization of Ramsey graphs?

1. Definability of SOGQs can be reduced to that of GQs.
2. Some collective structures are not definable in SO.

Question
What is the definability theory for SOGQs?



What are other interesting transformations?

Q Q∗



More details in:

J. Kontinen and J. Szymanik
A Remark on Collective Quantification, Journal of Logic,
Language and Information, Volume 17, Number 2, 2008,
pp. 131–140.

J. Szymanik
Computational Complexity of Polyadic Lifts of Generalized
Quantifiers in Natural Language, Linguistics and
Philosophy, Vol. 33, Iss. 3, 2010, pp. 5–250.

J. Kontinen and J. Szymanik
Characterizing Definability of Second-Order Generalized
Quantifiers, 6642, 2011, pp. 187–200.
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