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Abstract

1. Definability of SOGQs can be reduced to that of GQs.

2. Some collective quantifiers are not definable in SO.
3. Then they can not be defined via the type-shifting strategy.
4. Is it a problem for formal semantics?
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Characterizing complexity of NL-quantifiers

1. Complexity of various fragments

2. Complexity of reasoning
3. Complexity of model-checking
4. Empirical plausibility of automata-model
5. Polyadic quantifiers: tractability borders

Focus on distributive readings.
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Collectivity in language

(1.) All the Knights but King Arthur met in secret.
(2.) Most climbers are friends.
(3.) John and Mary love each other.
(4.) The samurai were twelve in number.
(5.) Many girls gathered.
(6.) Soldiers surrounded the Alamo.
(7.) Tikitu and Samson lifted the table.



Examples

(1.) Five people lifted the table.

(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.
(2’.) ∃X [X ⊆ Students ∧ Play(X )].
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Type-shifting strategy

1. Existential modifier (Van Der Does 1992)
2. Neutral modifier (Van Der Does 1992)
3. Determiner fitting (Winter 2001):

((et)((et)t)) (((et)t)(((et)t)t))



Expressive power of type-shifting

Theorem
Let Q be a quantifier definable in SO. Then the collective
quantifiers QEM , QN , and Qdfit are definable in SO.

Theorem
Let us assume that the lift (·)∗ and a quantifier Q are both
definable in second-order logic. Then the collective quantifier Q∗ is
also definable in second-order logic.

Corollary
Type-shifting strategy cannot take us outside SO.
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Is it enough?

Definition
Most As are B ⇐⇒ |(P ∩ S)| > |(P − S)|, where A,B ⊆ P(U)

Theorem (Old result)
If the quantifier Most is definable in second-order logic, then
counting hierarchy, CH is equal polynomial hierarchy, PH.
Moreover, CH collapses to its second level.

We characterize the definability of collective quantifiers.
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Preliminaries

I We consider finite structures. The universe of a structure A is
denoted by A. We assume A is of the form {0, . . . ,m} for
some m ∈ N.

I We consider logics with built-in relations. In addition to <,
which is interpreted naturally, we use the relations +, ×, and
BIT defined by: BIT(a, j) holds iff the bit of order 2j is 1 in
the binary representation of a.
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Preliminaries

Many of the logics considered in this talk correspond to interesting
complexity classes:

I FO(<,+,×) ≡ LH ≡ DLOGTIME− uniform AC0

I MSO(+) ≡ LINH (over strings)
I SO ≡ PH
I FO(M,+,×) ≡ LCH ≡ DLOGTIME− uniform TC0

I FO(Most1, <) ≡ LINCH (over strings)
I FO(Mostk)k∈N∗ ≡ CH
I FO(Dk ,+,×) ≡ DLOGTIME− uniform AC0[p]



Lindström quantifiers

Definition
Let τ = {P1, . . . ,Pr} be a relational vocabulary, where Pi is li -ary
for 1 ≤ i ≤ r , and Q a class of τ -structures closed under
isomorphisms. The class Q gives rise to a generalized quantifier
which we also denote by Q. The tuple s = (l1, . . . , lr ) is the type of
the quantifier Q.



Examples Lindström quantifiers

∀ = {(A,P) | P = A}.
∃ = {(A,P) | P ⊆ A & P 6= ∅}.

even = {(A,P) | P ⊆ A & |P| is even}.
most = {(A,P, S) | P, S ⊆ A & |(P ∩ S)| > |(P − S)|}.

M = {(A,P) | P ⊆ A and |P| > |A|/2}
Some = {(A,P, S) | P, S ⊆ A & P ∩ S 6= ∅}

QS = {(A,P) | P ⊆ A and |P| ∈ S}.

If S = {kn | n ∈ N} for some k ∈ N, we denote QS by Dk .



Logics with Lindström quantifiers

The extension FO(Q) is defined as usual.

A |= Qx1, . . . , x r (φ1(x1), . . . , φr (x r )) iff (A, φA
1 , . . . , φ

A
r ) ∈ Q,

where φA
i = {a ∈ Ali | A |= φi (a)}



Second-order structures

Definition
Let t = (s1, . . . , sw ), where si = (l i1, . . . , l

i
ri ) is a tuple of positive

integers for 1 ≤ i ≤ w . A second-order structure of type t is a
structure of the form (A,P1, . . . ,Pw ), where
Pi ⊆ P(Al i1)× · · · × P(Al iri ).



Second-order generalized quantifiers

Definition
A second-order generalized quantifier Q of type t is a class of
structures of type t such that Q is closed under isomorphisms.

Definition
Q is monadic if l ij = 1 for all 1 ≤ j ≤ ri and 1 ≤ i ≤ w .



Examples of second-order GQs

∃21 = {(A,P) | P ⊆ P(A) & P 6= ∅}.
Even = {(A,P) | P ⊆ P(A) & |P| is even}.
Even′ = {(A,P) | P ⊆ P(A) & ∀X ∈ P(|X | is even)}.
Most = {(A,P, S) | P, S ⊆ P(A) & |(P ∩ S)| > |(P − S)|}.
Most1 = {(A,P) | P ⊆ P(A) & |P| > 2|A|−1}
Mostk = {(A,P) | P ⊆ P(Ak) and |P| > 2|A|

k−1}
QS = {(A,P) | P ⊆ P(A) and |P| ∈ S}.

If S = {kn | n ∈ N} for some k ∈ N, we denote QS by Dk .



FO(Q)

A |= QX 1, . . . ,Xw (φ1, . . . , φw ) iff (A, φA
1 , . . . , φ

A
w ) ∈ Q,

where φA
i = {R ∈ P(Al i1)× · · · × P(Al iri ) | A |= φi (R)}.



Warning

Do not confuse:
I FO GQs (Lindström) with FO-definable quantifiers

E.g. most is FO GQs but is not FO-definable.
I SO GQs with SO-definable quantifiers

E.g. Most is SO GQs but not SO-definable.
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Definability—intuitions

Theorem
A first-order Q is definable in L iff L ≡ L(Q).

Question
How do we formalize definability for SOGQs?

Example
∃21 is definable in L if there is a uniform way to express ∃21Xψ(X )
for any formula ψ(X ) in L. Over a model A, ψ(X ) defines a
collection of subsets {C ⊆ A | A |= ψ(C )}, so the problem is to
find a way to express its non-emptyness for each ψ(X ).
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L(G1, . . . ,Gw)

Definition
Let L be a logic, t = (s1, . . . , sw ) a second-order type, and let
G1, . . . ,Gw be first-order quantifier symbols of types s1, . . . , sw .
1. The models of L(G1, . . . ,Gw ) are of the form
A = (A,G1, . . . ,Gw ), where A is a first-order model and

Gi ⊆ P(Al i1)× · · · × P(Al iri ).

2. The quantifiers Gi are interpreted using the relations Gi :

A |= Gi x̄1, . . . , x̄ri (φ1(x̄1), . . . , φri (x̄ri ))

iff (φA1 , . . . , φ
A
ri ) ∈ Gi .



Definability—definition

Observation
If φ ∈ L(G1, . . . ,Gw ) is a sentence of vocabulary τ = ∅. Then

Mod(φ) = {(A,G1, . . . ,Gw ) | (A,G1, . . . ,Gw ) |= φ}

corresponds to a second-order generalized quantifier of type t.

Definition
Let Q be a quantifier of type t. The quantifier Q is definable in a
logic L if there is φ ∈ L(G1, . . . ,Gw ) of vocabulary σ = ∅ such that
for any t-structure (A,G1, . . . ,Gw ),

(A,G1, . . . ,Gw ) |= φ⇔ (A,G1, . . . ,Gw ) ∈ Q.



Definability— some basic facts

Theorem (Kontinen 2010)
If Q is definable in L then L ≡ L(Q).

Theorem (Kontinen 2010)
There is a quantifier Q of type ((1)) which is not definable in FO
and satisfies FO ≡ FO(Q).
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Characterizing definability—main idea

Recall, Q of type ((1)) is definable in SO if there is a sentence
φ ∈ SO(G) such that for all second-order structures (A,G ):

(A,G ) |= φ⇔ (A,G ) ∈ Q .

We show that SO and the relation G can be replaced by FO and a
unary relation P by passing from A to a domain of cardinality 2|A|.



First-order encoding of second-order structures

Observation

1. There is a one-to-one correspondence between integers
m ∈ B = {0, . . . , 2n − 1} and subsets of A = {0, . . . , n − 1};

2. Relations of A can be encoded as tuples of elements of B;
3. Sets of relations of A by relations of B.



Formally

Definition
Let t = (s1, . . . , sw ) be a type where si = (1, . . . , 1) is of length ri
for 1 ≤ i ≤ w . Let A = (A,G1, . . . ,Gw ) be a t-structure where
A = {0, . . . , n − 1} and Gi ⊆ P(A)× · · · × P(A). Denote by
Â = (B,P1, . . . ,Pw ) the following first-order structure of
vocabulary τ = {P1, . . . ,Pw}, where Pi is a ri -ary predicate, and
1. B = {0, . . . , 2n − 1},
2. Pi = {(j1, . . . , jri ) ∈ B ri | (J1, . . . , Jri ) ∈ Gi}, where, for

1 ≤ k ≤ ri , bin(jk) is given by s0 · · · sn−1, and
sl = 1⇔ l ∈ Jk .



Q?

Definition
For a quantifier Q of type t, we denote by Q? the first-order
quantifier of vocabulary τ defined by

Q? := {Â : A ∈ Q},

where Â is the first-order encoding of A.



Characterization

Theorem
Let Q1 and Q2 be monadic quantifiers. Then Q1 is definable in
MSO(Q2,+) if and only if Q?

1 is definable in FO(Q?
2,+,×).

Built-in addition unleashes the expressive power of MSO.
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Corollaries

Definition
Let t = (s1, . . . , sw ) and τ be as before. Let Q be of type t. The
quantifier Q is numerical if there is T ⊆ Nw s.t. for all
(A,P1, . . . ,Pw )

(A,P1, . . . ,Pw ) ∈ Q ⇔ (|P1|, . . . , |Pw |) ∈ T .

We denote Q by QT and by QT the first-order numerical quantifier
(defined analogously) of vocabulary τ .
For a numerical QT , the quantifier Q?

T is just the restriction of QT
to the cardinalities 2n:

Q?
T = {(A,P1, . . . ,Pw ) ∈ QT : |A| = 2n for some n ∈ N}.



Corollaries cont.

Theorem
Let QT be a numerical quantifier and k ∈ N. Then

1. QT is definable in MSO(+) iff QT is definable in FO(+,×).

2. QT is definable in MSO(Dk ,+) iff QT is definable in
FO(Dk ,+,×).

3. QT is definable in MSO(Most1,+) iff QT is definable in
FO(M,+,×).



Most1 is not definable in SO

Theorem
The quantifier Most1 is not definable in SO.

Proof.
Show that definability of Most1 in SO implies that, for some k , the
quantifier M is definable in FO(+,×) over cardinalities 2n

k
. Over

these cardinalities, we could then express PARITY in the logic
FO(+,×). This contradicts the result of Ajtai(1983).

Corollary
The type-shifting strategy is not general enough to cover all
collective quantification in natural language.
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I Does Most1 belong to everyday language?
I Everyday language doesn’t realize prop. col. qua.
I No need to extend the higher-order approach to prop. qua.

Question
Did we just encounter an example where complexity restricts the
expressibility of everyday language?



I Does Most1 belong to everyday language?
I Everyday language doesn’t realize prop. col. qua.
I No need to extend the higher-order approach to prop. qua.

Question
Did we just encounter an example where complexity restricts the
expressibility of everyday language?



Summary

I Definability of SOGQs can be reduced to that of GQs.
I Most1 is not definable in SO.
I Type-shifting strategy is restricted.
I Does NL go beyond SO?



More details in:

J. Kontinen and J. Szymanik
A Remark on Collective Quantification,
Journal of Logic, Language and Information , Volume 17,
Number 2, 2008, pp. 131–140.

J. Kontinen and J. Szymanik
Characterizing Definability of Second-Order Generalized
Quantifiers,
LNAI, 6642, 2011, pp. 187–200.

J. Szymanik
Quantifiers in TIME and SPACE,
PhD Dissertation, University of Amsterdam.
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