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Equivalent complexity thesis

Linguists and non-linguists alike agree in seeing human language as the
clearest mirror we have of the activities of the human mind, and as a specially
important of human culture, because it underpins most of the other
components. Thus, if there is serious disagreement about whether language
complexity is a universal constant or an evolving variable, that is surely a
question which merits careful scrutiny. There cannot be many current topics
of academic debate which have greater general human importance than this
one. (Sampson, 2009)

Existing approaches depend on implementation/theory:
I Typological approach (McWhorther, 2001; Everett, 2008)
I Information-theoretic approach (Juola, 2009)
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What are the semantic bounds of everyday language?

I How to delimit ‘natural concepts’ expressible in language?
I How powerful must be our linguistic theories?
I Are some concepts harder than others?
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Generalized Quantifiers

Definition
A quantifier Q is a way of associating with each set M a function from pairs of
subsets of M into {0, 1} (False, True).

Example

everyM [A,B] = 1 iff A ⊆ B

evenM [A,B] = 1 iff card(A ∩ B) is even

mostM [A,B] = 1 iff card(A ∩ B) > card(A− B)
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Space of GQs

I If card(M) = n, then there are 222n
GQs.

I For n = 2 it gives 65,536 possibilities.

Question
Which of those correspond to simple determiners?
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Isomorphism closure
(ISOM) If (M, A, B) ∼= (M′, A′, B′), then QM(A, B)⇔ QM′ (A′, B′)

Topic neutrality



Extensionality
(EXT) If M ⊆ M′, then QM(A, B)⇔ QM′ (A, B)



Conservativity
(CONS) QM(A, B)⇔ QM(A, A ∩ B)

A− B A ∩ B m
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Definability

Definition
Let Q be a generalized quantifier and L a logic. We say that the quantifier Q
is definable in L if there is a sentence ϕ ∈ L such that for any M:

M |= ϕ iff QM [A,B].

Theorem
‘There exists (in)finitely many’, ‘most’ and ‘even’ are not FO-definable.

Theorem (Westerståhl 1998)
In finite models, persistent CE-quantifiers are FO-definable.
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E.g. in terms of Chomsky’s Hierarchy



Or (in)tractability border

Empirically adequate models (and theories) of language will give rise to
NP-completeness, under an appropriate idealization to unbounded inputs. If
a language model is more complex than NP, say PSPACE-hard, then our
complexity thesis predicts that the system is unnaturally powerful, perhaps
because it overgeneralizes from the empirical evidence or misanalyses some
linguistic phenomena. (Ristad, 1993)
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Conservativity and learnability

gleebM [A,B] = 1 iff A 6⊆ B

gleeb′M [A,B] = 1 iff B 6⊆ A

(Hunter & Lidz, 2010)
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FO- and HO-quantifiers

Differences in brain activity.
I Only higher-order activate working-memory capacity:

recruit right dorsolateral prefrontal cortex.

(McMillan et al., 2005, Szymanik, 2007)
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Various semantic problems

I Inferential meaning
↪→ complexity of reasoning (satisfiability)
How complex are natural language arguments?

I Referential meaning
↪→ complexity of verification (model-checking)
How hard are natural language concepts?

They are closely related (Gottlob et al., 1999).



Example of inferences

Every Italian loves pasta and football.
Camilo is Italian

Camilo loves pasta

Everyone likes everyone who likes Pat
Pat doesn’t like every clarinetist

Everyone likes everyone who likes everyone who doesn’t like every clarinetist

Theorem (Pratt-Hartmann 2010)
Having both negation and relatives makes fragments hard.
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Principle of least effort in argumentation?

(Thorne, 2012)



Complexity of verifying quantifiers

Quantifiers Chomsky hierarchy
Aristotelian REG
Numerical REG

Parity REG
Proportional CFL

These classes are closed also on iterations.

(van Benthem, 1986; Mostowski, 1998; Icard and Steinert-Threlkeld, 2013)



Processing load

(Zajenkowski, Styla, and Szymanik, 2010)



Monadic quantifier distribution and power law regression
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Intermediate summary

So far we’ve seen that various notions of complexity can lead to interesting
theoretical questions as well as fruitful experiments. But how do we
generalize these notions beyond distributive quantifiers?
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Collectivity

(1.) All the Knights but King Arthur met in secret.

(2.) Most climbers are friends.

(3.) John and Mary love each other.

(4.) The samurai were twelve in number.

(5.) Many girls gathered.

(6.) Soldiers surrounded the Alamo.

(7.) Tikitu and Samson lifted the table.



Let’s start with examples

(1.) Five people lifted the table.

(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.

(2’.) ∃X [X ⊆ Students ∧ Play(X )].
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Existential modifier

Definition (van der Does 1992)
Fix a universe of discourse U and take any X ⊆ U and Y ⊆ P(U). Define the
existential lift QEM of a quantifier Q in the following way:

QEM(X ,Y ) is true ⇐⇒ ∃Z ⊆ X [Q(X ,Z ) ∧ Z ∈ Y ].

((et)((et)t)) ; ((et)(((et)t)t))

Fact
Existential modifier arbitrarily decides invariance properties.
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Lindström quantifiers

Definition
A generalize quantifier Q is a class of models closed on isomorphism.



Examples Lindström quantifiers

∀ = {(A,P) | P = A}.
∃ = {(A,P) | P ⊆ A & P 6= ∅}.

even = {(A,P) | P ⊆ A & card(P) is even}.
most = {(A,P,S) | P,S ⊆ A & card(P ∩ S) > card(P − S)}.

M = {(A,P) | P ⊆ A and |P| > |A|/2}
some = {(A,P,S) | P,S ⊆ A & P ∩ S 6= ∅}.



Second-order structures

Definition
Let t = (s1, . . . , sw ), where si = (l i

1, . . . , l
i
ri ) is a tuple of positive integers for

1 ≤ i ≤ w . A second-order structure of type t is a structure of the form
(A,P1, . . . ,Pw ), where Pi ⊆ P(Al i1)× · · · × P(Al iri ).



Second-order generalized quantifiers

Definition
A second-order generalized quantifier Q of type t is a class of structures of
type t such that Q is closed under isomorphisms.



Second-order GQs

∃2 = {(M,P) | P ⊆ P(M) & P 6= ∅}.
EVEN = {(M,P) | P ⊆ P(M) & card(P) is even}.

EVEN′ = {(M,P) | P ⊆ P(M) & ∀X ∈ P(card(X ) is even)}.
MOST = {(M,P,S) | P,S ⊆ P(M) & card(P ∩ S) > card(P − S)}.

someEM = {(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(Y 6= ∅ & P ∈ G)}.



Warning!

Do not confuse:

I FO GQs (Lindström) with FO-definable quantifiers
E.g. most is FO GQs but is not FO-definable.

I SO GQs with SO-definable quantifiers
E.g. MOST is SO GQs but not SO-definable.
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GQs are not enough

Theorem (Kontinen 2002)
The extension L∗ of first-order logic by all Lindström quantifiers cannot define
the monadic second-order existential quantifier, someEM .

Corollary
GQs alone are not adequate for formalizing all NL quantification.



SO-definable GQs are closed on lifts

Theorem
Let Q be a Lindström quantifier definable in SO. Then QEM is definable in SO.

And this is the case for all SO-definable lifts:

Theorem
Let us assume that the lift (·)∗ and a Lindström quantifier Q are both
definable in second-order logic. Then the collective quantifier Q∗ is also
definable in second-order logic.
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Some collectives are not definable in SO

(5.) Most groups of students played Hold’em together.

(5’.) MOST X ,Y [Students(X ),Play(Y )].

Question
Can we capture it via type-shifting?

Theorem (Kontinen and Szymanik 2014)
The collective quantifier MOST is not definable in second-order logic.

Theorem (Kontinen and Szymanik 2014)
Q1 is definable in SO(Q2,+) if and only if Q?

1 is definable in FO(Q?
2 ,+,×),

where:
Q? := {Â : A ∈ Q},

where Â is the first-order encoding of A.
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Consequences

Corollary
The type-shifting strategy is not general enough to cover all collective
quantification in natural language.

Corollary
We can have a theory of collective quantifiers similar to the one we have for
distributive ones.

Question
Have we just encountered an example where complexity restricts the
expressibility of everyday language as suggested already by Ristad? And
therefore, should we treat semantic complexity as another semantic
universale?
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Quantifiers and Chomsky’s Hierarchy

All As are B.

q0 q1
aAB̄

More than 2 As are B.

q0 q1 q2 q3
aAB aAB aAB

Most As are B.

van Benthem, Essays in logical semantics, 1986

Mostowski, Computational semantics for monadic quantifiers, 1998
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A simple study

More than half of the cars are yellow.



Verification times can be predicted by complexity

Szymanik & Zajenkowski, Comprehension of simple quantifiers. Empirical evaluation of a computational model, Cognitive Science,

2010



Neurobehavioral prediction wrt working memory is satisfied

Differences in brain activity.
I Only proportional quantifiers activate working-memory capacity:

recruit right dorsolateral prefrontal cortex.

McMillan et al., Neural basis for generalized quantifiers comprehension, Neuropsychologia, 2005

Szymanik, A Note on some neuroimaging study of natural language quantifiers comprehension, Neuropsychologia, 2007



Experiment with schizophrenic patients

I Compare performance of:
I Healthy subjects.
I Patients with schizophrenia.

I Known WM deficits.



Patients are generally slower



Patients are only less accurate with proportional quantifiers

Zajenkowski et al., A computational approach to quantifiers as an explanation for some language impairments in schizophrenia,

Journal of Communication Disorders, 2011.



Comprehension and verification are influenced by complexity

1. Draw and verify:
I All/Most of the dots are directly connected to each other.

2. In line with complexity:
I Fewer strong pictures for ‘most’
I Better performance on complete graphs for ’All’-condition

Bott et al., Interpreting Tractable versus Intractable Reciprocal Sentences, Proceedings of the International Conference on

Computational Semantics, 2011.

Schlotterbeck & Bott, Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational

antecedents, Proc. of the Logic & Cognition Workshop at ESSLLI 2012.
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Example

everyM [A,B] = 1 iff A ⊆ B

evenM [A,B] = 1 iff card(A ∩ B) is even

mostM [A,B] = 1 iff card(A ∩ B) > card(A− B)



Generalized Quantifiers

Definition
A quantifier Q is a way of associating with each set M a function from pairs of
subsets of M into {0, 1} (False, True).

Example

everyM [A,B] = 1 iff A ⊆ B

evenM [A,B] = 1 iff card(A ∩ B) is even

mostM [A,B] = 1 iff card(A ∩ B) > card(A− B)



Generalized Quantifiers

Definition
A quantifier Q is a way of associating with each set M a function from pairs of
subsets of M into {0, 1} (False, True).

Example

everyM [A,B] = 1 iff A ⊆ B

evenM [A,B] = 1 iff card(A ∩ B) is even

mostM [A,B] = 1 iff card(A ∩ B) > card(A− B)



Space of GQs

I If card(M) = n, then there are 222n
GQs.

I For n = 2 it gives 65,536 possibilities.

Question
Which of those correspond to simple determiners?



Space of GQs

I If card(M) = n, then there are 222n
GQs.

I For n = 2 it gives 65,536 possibilities.

Question
Which of those correspond to simple determiners?



Isomorphism closure
(ISOM) If (M, A, B) ∼= (M′, A′, B′), then QM(A, B)⇔ QM′ (A′, B′)

Topic neutrality



Extensionality
(EXT) If M ⊆ M′, then QM(A, B)⇔ QM′ (A, B)



Conservativity
(CONS) QM(A, B)⇔ QM(A, A ∩ B)

A− B A ∩ B m



(In)tractable Reciprocal Constructions

Five pitchers sat alongside each other.

Some Pirates were staring at each other.

Most PMs referred to each other.

Most girls and most boys hate each other

♀

♀

♀

♂

♂

♂

(Gierasimczuk & Szymanik, 2009; Szymanik, 2010)
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Quantifier distribution by classes
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Ramsey quantifier distribution and power law regression
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Summary: proof of concept

I Computationally easier expressions occur exponentially more frequent.
I Semantic complexity can quantify linguistic simplicity.
I Additional support for the cognitive studies.
I Semantic complexity is an empirically fruitful notion.
I Next step, apply it to equivalent complexity thesis.



Semantic complexity as universale

I Some expressions may be even too hard to appear in NL.
I E.g, some collective quantifiers can be crazy complex!

I Complexity as a test of methodological plausibility of linguistic theories.

(Ristad, 1993; Mostowski & Szymanik, 2012; Kontinen & Szymanik, 2014)



Van Benthem problem

Observation
(·)EM works only for right monotone increasing quantifiers.

(1.) No students met yesterday at the coffee shop.

— ↓MON↓;↑MON↑
(2.) No left-wing students met yesterday at the coffee shop.

(3.) No students met yesterday at the “Che” coffee shop.
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The total number is missing

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)EM [Student,Drink-a-whole-keg-of-beer].

(1”.) ∃A ⊆ Student[card(A) = 5 ∧ Drink-a-whole-keg-of-beer(A)]
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Neutral Modifier

Definition (van der Does 1992)
Let U be a universe, X ⊆ U, Y ⊆ P(U), and Q a type (1, 1) quantifier. We
define the neutral modifier:

QN [X ,Y ] is true ⇐⇒ Q
[
X ,
⋃

(Y ∩ P(X ))
]
.



Monotonicity preservation under (·)N

Fact (Ben-Avi and Winter 2003)
Let Q be a distributive determiner. If Q belongs to one of the classes ↑MON↑,
↓MON↓, MON↑, MON↓, then the collective determiner QN belongs to the
same class. Moreover, if Q is conservative and ∼MON (MON∼), then QN is
also ∼MON (MON∼).



What about split groups?

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)N [Student,Drink-a-whole-keg-of-beer].

card
({

x |∃A ⊆ Student[x ∈ A ∧ Drink-a-whole-keg-of-beer(A)]
})

= 5.
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Another example . . .

Definition
We take fiveEM to be the second-order quantifier denoting:

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(card(Y ) = 5 & P ∈ G)}.

(4.) Five people lifted the table.

(4’.) fiveEMx ,X [Student(x), Lift(X )].
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Determiner fitting

Definition (Winter 2001)
For all X ,Y ⊆ P(U) we have that

Qdfit(X ,Y ) is true

⇐⇒

Q[∪X ,∪(X ∩ Y )] ∧ [X ∩ Y = ∅ ∨ ∃W ∈ X ∩ Y ∧Q(∪X ,W )].

((et)((et)t)) ; (((et)t)(((et)t)t))
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It really works...

Monotonicity of Q Monotonicity of Qdfit Example

↑MON↑ ↑MON↑ Some
↓MON↓ ↓MON↓ Less than five
↓MON↑ ∼MON↑ All
↑MON↓ ∼MON↓ Not all
∼MON∼ ∼MON∼ Exactly five
∼MON↓ ∼MON↓ Not all and less than five
∼MON↑ ∼MON↑ Most
↓MON∼ ∼MON∼ All or less than five
↑MON∼ ∼MON∼ Some but not all

Table : Monotonicity under the determiner fitting operator; cf. (Ben-Avi and Winter
2003).



What is the right ontology for semantics?

I L∗ and SO doesn’t capture natural language?

I Are many-sorted (algebraic) models more plausible?
I Type-shifting is too complex;
I In principle this question is psychologically testable.
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Σ1
1(Ristad’s)-thesis

Hypothesis
Our everyday language is semantically bounded by the properties
expressible in the existential fragment of second-order logic.



Logics with Lindström quantifiers

The extension FO(Q) is defined as usual.

A |= Qx1, . . . , x r (φ1(x1), . . . , φr (x r )) iff (A, φA
1 , . . . , φ

A
r ) ∈ Q,

where φA
i = {a ∈ Ali | A |= φi(a)}



It violates invariance properties

Definition
A distributive determiner of type (1, 1) is conservative if and only if the
following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,A ∩ B].

Fact
For every Q the quantifier QEM is not CONS.
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...and not only because of technicalities

Definition
We say that a collective determiner Q of type ((et)(((et)t)t)) satisfies
collective conservativity iff the following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,P(A) ∩ B].

Fact
For every Q the collective quantifier QEM satisfy collective conservativity.

We need less arbitrary approach . . .



...and not only because of technicalities

Definition
We say that a collective determiner Q of type ((et)(((et)t)t)) satisfies
collective conservativity iff the following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,P(A) ∩ B].

Fact
For every Q the collective quantifier QEM satisfy collective conservativity.

We need less arbitrary approach . . .



...and not only because of technicalities

Definition
We say that a collective determiner Q of type ((et)(((et)t)t)) satisfies
collective conservativity iff the following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,P(A) ∩ B].

Fact
For every Q the collective quantifier QEM satisfy collective conservativity.

We need less arbitrary approach . . .


	Motivations: why do we need semantic complexity?
	Logical tools to capture semantic complexity
	Semantic universals
	Definability
	Inherent complexity of the concept

	Are these measures fruitfull?
	Semantic universals: CONS
	Definability
	Inherent complexity

	Semantic complexity of collective quantifiers
	Type-lifting strategy
	Second-order generalized quantifiers
	Definability characterization

	Appendix
	Semantic complexity as a semantic universale


