
Exploring complexity of social interactions

Jakub Szymanik

Institute for Logic, Language and Computation
University of Amsterdam

Social Dynamics of Information Change
Amsterdam 03.12.13



Motivations

models −→ computations −→ cognition

Problem:
I taking computations more seriously
I underlying computations are often non-feasible

↪→ e.g., DEL planning

Response:
I map the feasibility borders
I identify responsible parameters
I shifting focus to concrete epistemic tasks
I from agents’ perspective

↪→ cf. Van Ditmarsch
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Finite Iterated Prisoners’ Dilemma

Defect2 Cooperate2

Defect1 1, 1 4, 0
Cooperate1 0, 4 3, 3

I For N =? or N =∞ rationally decide to cooperate fearing retaliation.

I For N = k rationally defect in every round. Humans don’t!

Theorem (Neyman 1985)
If players have sufficiently small memory then cooperate!

↪→ c.c. considerations can vanquish some counterintuitive conclusions

↪→ by modeling resource-bounded rationality

↪→ linking to cognitive modeling

Question
Can c.c. provide new insights by linking economy with CogSci?

Neyman. Bounded complexity justifies cooperation in the finitely repeated prisoners’ dillema, Economics Letters, 1985
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General Complexity of Finding Equilibria

Theorem
For general two-player game finding a Nash equilibrium is hard.

Question

I What about interesting games?
I What are the factors responsible for the complexity?

Daskalakis, Goldberg, Papadimitriou. The complexity of computing a Nash equilibrium, Communication ACM, 2009



Backward Induction and Higher-order Reasoning
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Logical analysis: MDG decision trees

s,1
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(s1, s2) u,1

(p1, p2) (q1, q2)

l r
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Definition
G is generic, if for each player, distinct end nodes have different pay-offs.
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What’s the computational complexity?

Definition
Let T be a two-player game. We define the backward induction accessibility relation
on T . Let PT

bi(x, y) be the smallest relation on vertices of T such that:

1. PT
bi(x, x)

2. Take i = 1, 2. Assume that x ∈ Vi and PT
bi(z, y). If the following two conditions

hold, then also PT
bi(x, y) holds:

2.1 E(x, z);
2.2 there is no w, v such that E(x,w), PT

bi(w, v), and fi(v) > fi(y).

BI = {T|PT
bi(s, t)}

Theorem
BI is PTIME-complete via first-order reductions.

Szymanik. Backward Induction is PTIME-complete, LoRI 2013



What are the factors influencing complexity?

Definition
Let’s assume that the players strictly alternate in the game. Then:

1. In a Λi
1 tree all the nodes are controlled by Player i.

2. In a Λi
k tree, k-alternations, starts with an ith Player node.

s,1

(t1, t2) t,2

(s1, s2) u,1

(p1, p2) (q1, q2)

l r

l r

l r

Figure : Λ1
3 -tree
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Outlook

Conjecture
For every i, j ∈ {1, 2}, the computational complexity of solving Λi

k+1 graphs is
greater than for all Λj

k graphs, and all Λi
k graphs are of the same complexity?

↪→ how higher-order reasoning links to computations?

↪→ can c.c. analysis inform cognitive models?

↪→ can c.c. help to identify rationality-obstacles?

van Benthem and Gheerbrant. Game solution, epistemic dynamics, and fixed-point logics, Fundamenta Informaticae, 2010

Szymanik, Meijering, Verbrugge. Using intrinsic complexity of turn-taking games to predict participants’ reaction times, 35th CogSci, 2013
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Reasoning about information

Case study to inquire how the complexity of various reasoning tasks is influenced by:

I choice of similarity notion for information states,
I choice of information structures,



Information Similarity

Is everyone in the same state of mind in both situations?

Theorem

1. Kripke model isomorphism is ‘hard’.

2. Multi-agent epistemic S5 model bisimilarity is P-complete



Inducing Information Similarity

Is it possible to give Lucy info that she’s in the same state of mind as Shroeder?

Theorem

1. For arbitrary Kripke models: NP-hard.

2. For S5: in linear time.

van Ditmrsch & French. Simulation and Information: Quantifying over epistemic events , KRAMAS, 2008



Classification Problem

Problem Tractable? Comments

Kripke model isomorphism unknown in GI
Epistemic model bisimilarity Yes ?? P-hard for ≥ 2 agents
Flipped horizon bisimilarity Yes P-complete for arbitrary models
Kripke submodel bisimulation No NP-complete for arbitrary models;

in linear time for S5
Local S5 submodel bisimulation 1 agent: Yes unknown
Total S5 submodel bisimulation 1 agent: Yes ?? NP-complete for ≥ 2 agents
Kripke submod. simulation (equiv.) No ?? in P for single agent S5

?? indicates a conjecture

Dégremont, Kurzen, Szymanik Exploring the Tractability Border in Epistemic Tasks , Synthese, 2012
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Muddy Children

You are visiting a relative, who has three children. While you are having coffee in the
living-room, the kids are playing outside. When they come back home, their father
says: (1) ‘At least one of you has mud on your forehead’. Then, he asks the children:
(I) ‘Can you tell for sure whether you have mud on your forehead? If yes, announce
your status’. Children know that their father never lies and that they are all perfect
logical reasoners. Each child can see the mud on others but cannot see his or her own
forehead. Nothing happens. But after the father repeats the question for the second
time suddenly all muddy children know that they have mud on their forehead. How is
that possible?



Epistemic Logic Representation
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More Succinct Representations

Observation
The scenario has two types of agents. Every clean child’s observation is
quantitatively equivalent to the observation of all other clean children. Similarly,
every muddy child observes the same as all other muddy children.

↪→

(3, 0)

(2, 0)

(2, 1)

(1, 1)

(1, 2)

(0, 2)

(0, 3)

↪→ concise modeling of concrete epistemic scenarios

↪→ agent’s internal representation

Gierasimczuk & Szymanik. A note on a generalization of the Muddy Children Puzzle, TARK 2011

Wang. Epistemic Modelling and Protocol Dynamics , PhD ILLC 2010
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Problem

Agents’ knowledge closed under deduction ↪→ logical omniscience

The view that machines cannot give rise to surprises is due, I believe, to a
fallacy to which philosophers and mathematicians are particularly subject.
This is the assumption that as soon as a fact is presented to a mind all
consequences of that fact spring into the mind simultaneously with it. It is
a very useful assumption under many circumstances, but one too easily
forgets that it is false.—Turing[1950]

Question
Can we give some formal account of ‘knowledge’ able to accommodate people
learning new things without leaving their armchairs?—Hintikka[1962]
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Knowing Prime Numbers

The largest known prime number is p = 257885161 − 1

But then would you say that p′ is also known?

p′ = The first prime larger than 257885161 − 1

Why not? I’d say as we don’t know any efficient algorithm that outputs p′.
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Procedural Knowledge

Internal algorithm by which you can efficiently answer
a large (infinite?) set of questions in some form

Example

1. Do you know Dutch?

2. Do you know Texas Hold’em?

3. Do you know calculus?

Aaronson. Why Philosophers Should Care About Computational Complexity, 2012
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How does it help with logical omniscience?

Question
Can we give axiomatics for ‘knowing how to compute efficiently’?

Example
If you know how to efficiently compute f and g, then you also efficiently know f + g



Cobham Axioms for FP

Theorem
FP is the smallest class satisfying:

1. Every constant f. and every f. that is nonzero only finitely many times is in FP

2. If f (x), g(x) ∈ FP then < f (x), g(x) >∈ FP

3. If f (x), g(x) ∈ FP then f (g(x)) ∈ FP

4. +,× ∈ FP

5. |x|, Π1, Π2, bit(< x, i >), diff (< x, i >) ∈ FP

6. 2|x|
2

7. If f (x) ∈ FP, and for all x ∈ N, |f (x)| ≤ |x|, then the function

g(< x, k >) =

{
f (g(< x, bk/2c)) if k > 1
x if k = 1.

∈ FP

Theorem (Leivant 1994)
f ∈ FP iff f is computed by a program that can be proved correct in SO with comprehension
restricted to positive quantifier-free formulas.
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Knowing How and Knowing That

Example
Do you know answer to the following questions:

1. Is 1591 = 43× 37?

2. What are the prime factors of 1591?

↪→ knowledge := agents’ question answering capacities

↪→ for infinite sets of related questions

↪→ linking to procedural perspective in NL semantics, and

↪→ learnability take on ‘knowledge’

Stalnaker. The problem of logical omniscience, I and II, 1999
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Summing up

Complexity considerations may bring our models closer to cognition
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