
Complexity of backward induction games

Jakub Szymanik

October 17, 2012



Outline

Introduction

Computational complexity

Complexity of a single trial

Outlook



Only surprising thing about the WikiLeaks revelations is that they contain
no surprises. Didn’t we learn exactly what we expected to learn? The real
disturbance was at the level of appearances: we can no longer pretend we
don’t know what everyone knows we know. This is the paradox of public
space: even if everyone knows an unpleasant fact, saying it in public
changes everything.

(Slavoj Žižek "Good Manners in the Age of WikiLeaks")
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Logic and CogSci?

Question
What can logic do for CogSci, and vice versa?



Marr’s levels of explanation

1. computational level:
I problems that a cognitive ability has to overcome

2. algorithmic level:
I the algorithms that may be used to achieve a solution

3. implementation level:
I how this is actually done in neural activity

Marr, Vision: a computational investigation into the human representation and processing of
the visual information, 1983
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Between computational and algorithmic level

Claim
Logic can inform us about inherent properties of the problem.

Level 1,5 Complexity level:
I complexity of the possible algorithms

Example
The shorter the proof the easier the problem.

Geurts, Reasoning with quantifiers, 2003

Gierasimczuk et al., Logical and psychological analysis of deductive mastermind, 2012

Example
The easier the algorithm the easier quantifier verification.

Szymanik & Zajenkowski, Comprehension of simple quantifiers, 2010
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Logic and social cognition

1. Higher-order reasonings: ‘I believe that Ann knows that Ben thinks . . . ’
2. Interacts with game-theory
3. Backward induction: tells us which sequence of actions will be chosen

by agents that want to maximize their own payoffs, assuming common
knowledge of rationality.

4. BI games have been extensively studied in psychology
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HIT-N Game

Gneezy et al. Experience and insight in the race game, 2010

Hawes et al. Experience and abstract reasoning in learning backward induction, 2012



Matrix game
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Player II

Hedden & Zhang What do you think I think you think?, 2002



Marble Drop Game

Meijering et al., The facilitative effect of context on second-order social reasoning, 2010



BI algorithm

At the end of the game, players have their values marked. At the
intermediate stages, once all follow-up stages are marked, the player to
move gets her maximal value that she can reach, while the other, non-active
player gets his value in that stage.



Project

1. What is the complexity of the computational problem?
2. What makes certain trials harder than others?

3. What is the connection with logic?
4. What is the connection with game-theory?

↪→ human reasoning strategies and bounded rationality
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Finite finitely branching trees

s,1

(t1, t2) t,2

(s1, s2) u,1

(p1, p2) (q1, q2)

l r

l r

l r



BI is computable in polynomial time

I Recursive depth first-traversal of the game tree.

I Therefore, BI ∈ PTIME.

Question
Is BI PTIME-complete?

Question
Descriptive complexity analysis of BI?

Van Benthem & Gheerbrant, Game solution, epistemic dynamics and fixed-point logics, 2010
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Preliminaries: reachability

Question
Is t reachable from s?

s

t

Theorem
Reachability is NL-complete.
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Alternating graphs

Definition
Let an alternating graph G = (V,E,A) be a directed graph whose vertices,
V , are labeled universal or existential. A ⊆ V is the set of universal
vertices. E ⊆ V × V is the edge relation.

A

E E

A A

A



Reachability on alternation graphs

Definition
Let G = (V,E,A, s, t) be an alternating graph. We say that t is reachable
from s iff PG

a (s, t), where PG
a (x, y) is the smallest relation on vertices of G

satisfying:
1. PG

a (x, x)

2. If x is existential and PG
a (z, y) holds for some edge (x, z) then PG

a (x, y).
3. If x is universal, there is at least one edge leaving x, and PG

a (z, y) holds
for all edges (x, z) then PG

a (x, y).



Is there an alternating path from s to t?

s, A

E E

A A

t, A



Reachability on alternating graphs is PTIME-complete

Definition
REACHa = {G|PG

a (s, t)}

Theorem
REACHa is PTIME-complete via first-order reductions.



Corollary on competitive games

Observation
Given G and s, REACHa intuitively corresponds to the question:
‘Is s a winning position for the first player in the zero-sum game G?’

Corollary
BI for zero-sum games is PTIME-complete.



Extensive form game graphs

Definition
A two player game G = (V,E, V1, V2, f1, f2, s, t) is a graph, where V is the
set of nodes, E ⊆ V × V is the edge relation (available moves). For i = 1, 2,
Vi ⊆ V is the set of nodes controlled by Player i, and V1 ∩ V2 = ∅. Finally,
fi : V −→ N assigns pay-offs for Player i.



BI accessibility relation

Definition
Let G be a two player game. We define the backward induction accessibility
relation on G. Let PG

bi (x, y) be the smallest relation on vertices of G such
that:
1. PG

bi (x, x)

2. Take i = 1, 2. Assume that x ∈ Vi and PG
bi (z, y). If the following two

conditions hold, then also PG
bi (x, y) holds:

2.1 E(x, z);
2.2 there is no w, v such that E(x,w), PG

bi (w, v), and fi(v) > fi(y).



And now, is t BI-accessible from s?

s, 2

1 1

2 (4, 7)

t, (5, 6)



BI decision problem

Definition
REACHbi = {G|PG

bi (s, t)}

Theorem
REACHbi is PTIME-complete via first-order reductions.



Is it interesting?

I Cobham-Edmonds thesis: PTIME = tractable

I Difficult to effectively parallelize (outside NC).
I Difficult to solve in limited space (outside L).
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Marble Drop Game



MDG decision trees

s,1

(t1, t2) t,2
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(p1, p2) (q1, q2)

l r

l r

l r

Definition
G is generic, if for each player, distinct end nodes have different pay-offs.
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Question

Question
How to approximate the complexity of a single instance?



Alternation type

Definition
Let’s assume that the players strictly alternate in the game. Then:
1. In a Λi

1 tree all the nodes are controlled by Player i.
2. In a Λi

k tree, k-alternations, starts with an ith Player node.

s,1
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Figure: Λ1
3 -tree
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Alternation hierarchy

Definition
Let Λi

k −REACHbi be the REACHbi problem over Λi
k-graphs and:

Λ−REACHbi =
⋃

i=1,2;0≤k≤n;n∈ω

Λi
k −REACHbi

Question
Does for every i, j ∈ {1, 2}, the computational complexity of REACHbi for
all Λi

k+1 graphs is greater than for all Λj
k graphs, and all Λi

k graphs are of
the same complexity?
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Logarithmic hierarchy, LH

Definition
LH = ATIME-ALT[log n, O(1)] – the set of boolean queries computed by
alternating Turing machines in O[log n] time, making a bounded number of
alternations.

Theorem
LH = FO



Open problem

Fact
Λi

1 −REACHbi = Reachability

Question
Does it correspond to logarithmic hierarchy?

Conjecture
Λ−REACHbi = LH = FO

Conjecture
Λi

k −REACHbi = ATIME −ALT [log n, k]
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Let’s talk psychology . . .



Subjects strategies

To explain eye-tracking data: forward induction with backward reasoning.

Ghosh & Meijering On combining cognitive and formal modelling: a case study involving
strategic reasoning, 2011



Λ1
3 trees
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Figure: Two Λ1
3 trees.



T−

Definition
If T is a generic game tree with the root node controlled by Player 1 (2) and
n is the highest pay-off for Player 1 (2), then T− is the minimal subtree of
T containing the root node and the node with pay-off n for Player 1 (2).



T−-example

s,1

999, 1

l
s,1

1, 1 t,2

12, 14 u,1

5, 7 w, 1

16, 8

l r

l r

l r

l

Figure: Λ1
1 tree and Λ1

3 tree



Alternations × pay-offs

Experimental Conjecture
Let us take two MDG trials T1 and T2. T1 is easier than T2 if and only if
T−1 is lower in the tree alternation hierarchy than T−2 .

Question
What if the player doesn’t control the node leading to the highest pay-off?
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Other possibility: opponent types

Assume that your opponent is:
1. Predictive
2. Risk-averse
3. Risk-taking
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Example of T risky

s,1

9, 1 t,2

3, 4 u,1

5, 3 w, 2

8, 19 0, 0

l r

l r

l r

l r

s,1

9, 1 t,2

3, 4 u,1

5, 3 w, 2

8, 19 0, 0

l r

r

l r

l

Figure: T and corresponding T risky .



Example of T cautious
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Figure: T and corresponding T cautious.



Order-reducing strategy

Observation
Every T risk and T cautious tree is Λi

1.

Question
What other strategies do it?

Question
What are the good strategies (preserving important game properties)?

Note
Resembles meaning shifts to avoid intractable interpretations (ϕ =⇒ ψ)

Mostowski & Szymanik, Semantic bounds for everyday language, 2012

Szymanik, Computational complexity of polyadic lifts of generalized quantifiers in NL, 2010

Gierasimczuk & Szymanik, Branching quantification vs. two-way quantification, 2009
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New rationality concepts for bounded agents

Theorem
BI-solution is a subgame perfect equilibrium, i.e., it represents a Nash
equilibrium of every subgame of the original game.
↪→ agents with restricted horizon should still play BI

Question
But what about bounded reasoners? What should be their rational strategy?
If BI is even rational in the first place . . .
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Logic

I Describing agents’ internal reasoning.
I Define modal/alternation depth of formulas.
I Show correspondence with Λi

k-hierarchy.
I Build proof-system.
I Define proof-depth that corresponds to the reasoning difficulty.
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General picture

Λ ∼ LH ∼ depth(ϕ) ∼ |proof |



Example

A proof:
1. turn2 ∧ 〈2〉(u2 = 0 ∧ u1 = 2) ∧ 〈2〉(u2 = 2 ∧ u1 = 1) ∧ (2 > 1) (premise)

2. turn2 ∧ 〈2〉(u2 = −1 ∧ u1 = −1) ∧ 〈2〉(u2 = 1 ∧ u1 = 4) ∧ (2 > 1) (premise)

3. (u2 = 2 ∧ u1 = 1) (from 1)

4. (u2 = 1 ∧ u1 = 4) (from 2)

5. (u1 = 1 ∧ u2 = 2) (from 3)

6. (u1 = 4 ∧ u2 = 1) (from 4)

7. turn1 ∧ 〈1〉(u1 = 1 ∧ u2 = 2) ∧ 〈2〉((u1 = 4 ∧ u2 = 1) ∧ (4 > 1) (from 5, 6)

8. (u1 = 4 ∧ u2 = 1) (from 2) (from 7)



Broader question

Question
What is the rationality theory of computationally bounded agents?
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