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Plan

❖ Revive the project of mental logic

❖ Probabilistic natural logic for syllogistic reasoning

❖ Weights based in empirical data

❖ Reflecting `complexity/preferability’ of single reasoning rules

❖ Proof-of-concept providing guidelines for further work



Logic as the theory of reasoning  & its challenges

❖ Logical Omniscience

❖ Conjunction Fallacy

❖ Wason Selection Task

❖ Suppression Task 

❖ etc.
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Mental Logic

❖ Rips (1994):

❖ Formulas as the underlying mental representations

❖ Inference rules are the basic operations

❖ PSYCOP based on Natural Deduction

❖ You can think about proofs as computations.



ML’s shortcomings

❖ Abstract rules and formal representations

❖ Based in natural deduction for FOL

❖ Ad hoc `psychological completness’

❖ Explains only validities, no story on mistakes

❖ No learning or individual differences



Natural Logic Program

❖ van Benthem 1986, Sánchez-Valencia 1991:

❖ Computationally minimal systems

❖ Following `the surface structure of NL’

❖ Traditionally monotonicity and semantic containment

❖ Recently intensively studied, extended, and applied, e.g., by Stanford NLP group

❖ So, why not build MLs based on these ideas? 
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IF No aardvark without a keen sense of smell can find food. 
THEN No aardvark without a sense of smell can find food.



Benchmark Task: arena of syllogistic reasoning
❖ All A are B : universal affirmative (A) 
❖ ︎Some A are B: particular affirmative (I) 
❖ ︎No A are B: universal negative (E) 
❖ ︎Some A are not B: particular negative (O)  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Syllogistic reasoning

Chater and Oaksford, 1999



Geurts (2003)’s model
❖ Logic including syllogistics and pivoting on monotonicity with rules:

❖ All-Some: `All A are B’ implies `Some A are B’.

❖ No-Some not: `No A are B’ implies `Some A are not B’.

❖ Conversion1: `Some A are B’ implies `Some B are A’;

❖ Conversion2: `No A are B’ implies `No B are A".

❖ Monotonicity: If A entails B, then the A in any upward entailing 
position can be substituted by a B, and the B in any downward 
entailing position can be substituted by an A.

❖ Extra rule: `No A are B’ and `Some C are A’ implies `Some C are not B’.



Example for EA2E



Geurts’ (2003) model c’td
❖ The shorter the proof the easier the syllogism.
❖ Initial budget of 100 units. Each use of the monotonicity rule costs 20, the 

extra rule costs 30; a proof containing a "Some Not" proposition costs an 
additional 10 units. Take the remaining budget as an evaluation of the 
difficulty. 

❖ It gives a good fit with data.

❖ Similar strategy works for other cognitive tasks, see Gierasimczuk et al. 2014.



Learning the inference 
rules from the data

Joint work with 
Fangzhou Zhai and 
Ivan Titov



Vanilla version
❖ Geurts’ logic
❖ Tree representation: states linked by reasoning events
❖ No vapid transitions



Probabilities
❖ Tendency value: an easier rule is adopted with higher probability, 

while a more difficult one is adopted with lower probability.

❖ Let Tr any rule and cr the number of ways that it can be adopted at S:



The output of the model

❖ A probability with which a syllogism is endorsed.

❖ 5 possible conclusions: A, I, E, O, NVC.

❖ Each leaf uniquely determines a path from the root.

❖ We can compute the probability that a given conclusion is drawn. 
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Training
❖ Subset of the data from Chater and Oaksford (1999)

❖ We use the Expectation-Maximization algorithm

❖ Compute:



Evaluation
❖ The Khemlani and Johnson-Laird (2012) method

❖ Detection theory



Performance of Vanilla Version

❖ 95,8% correct predictions on syllogisms 
with at least one conclusion.

❖ 81,6% correct predictions on all syllogisms.

❖ But no mechanism to explain the errors.

❖ The models always returns NVC for invalid syllogisms.



Adding illicit conversions

❖ Conversion: For every Q, 
`Q A are B’ implies `Q B are A’.

❖ Half the number of misses.

❖ 91,9% correct predictions on all syllogisms.

❖ For II, IO, EE, OI, OE, OO always returns NVC.



Let’s guess

❖ Probability of guessing NVC is negatively related to the 
informativeness of the premises.

❖ Atmosphere hypothesis when there is a negation in the 
premises, individuals are likely to draw a negative 
conclusion; when there is `some’ in the premises it will 
be likely in the conclusion; when neither is the case, the 
conclusion is often affirmative.



Performance
❖ 95% correct predictions on all syllogisms

❖ The training gives the informativeness order as assumed by Chater & Oaksford 

A(1.11) > E(0.33) > I(0.199) > O(-0.78) 

❖ And data yields the complexity order: 

Conversion<Monotonicity<All-Some<No-SomeNot 



Comparing with 
other theories

Khemlani and Johnson-Laird (2012)
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Summary

❖ Abstract ND rules of ML can be replaced by NL.

❖ Ad hoc `psychological completeness’ can be derived from data, 
some rules are unlikely to fire. 

❖ It can give a more systematic take on reasoning errors. 

❖ A way to classify inferences steps wrt cognitive difficulty.

❖ Yields computationally friendlier systems. 

❖ Modular approach.



How much logic do we need? 

(Pratt-Hartmann 2010; Thorne, 2010; Larry Moss, 2010) (Thorne, 2010)



Further work

❖ Extend to wider fragments of language.

❖ But also other types of reasoning 
(see, e.g. Gierasimczuk et. al. 2013, Braüner 2013).

❖ Run experiments/train model on better data.

❖ Understand learning and individual differences

(joint work with N. Gierasimczuk & A.L. Vargas Sandoval).

❖ Think about processing model and its complexity.

❖ …



Thank you!



Amsterdam 
Colloquium 2015

Workshop `Reasoning in 
Natural Language: Symbolic 
and Sub-symbolic Approaches’


