From Logic to Behavior

Modern semantics and complexity theory in cognitive modeling

Jakub Szymanik

Institute for Logic, Language and Computation University of Amsterdam

MCMP, June 13th, 2013

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Introduction: Logic & Cognition research project

Taking Marr Seriously

Using Logic to Predict Behavior

Formalization Semantics of the task Descriptive complexity

Conclusions

Kant: logical laws as the fabric of thoughts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

19th century: logic=psychologism (Mill)

- Kant: logical laws as the fabric of thoughts
- 19th century: logic=psychologism (Mill)
- Frege's anti-psychologism enforced separation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Kant: logical laws as the fabric of thoughts
- 19th century: logic=psychologism (Mill)
- Frege's anti-psychologism enforced separation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ▶ 19/20th century:
 - Beginnings of modern logic
 - Beginnings of modern psychology

- Kant: logical laws as the fabric of thoughts
- 19th century: logic=psychologism (Mill)
- Frege's anti-psychologism enforced separation
- ▶ 19/20th century:
 - Beginnings of modern logic
 - Beginnings of modern psychology
- '60 witness the growth of cognitive science
- but also: semantic and computational turn in logics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Kant: logical laws as the fabric of thoughts
- 19th century: logic=psychologism (Mill)
- Frege's anti-psychologism enforced separation
- ▶ 19/20th century:
 - Beginnings of modern logic
 - Beginnings of modern psychology
- '60 witness the growth of cognitive science
- but also: semantic and computational turn in logics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \hookrightarrow interpretation and processing

1. In building cognitive theories;

- 1. In building cognitive theories;
- 2. In computational modeling;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 1. In building cognitive theories;
- 2. In computational modeling;
- 3. In designing experiments.

- 1. In building cognitive theories;
- 2. In computational modeling;
- 3. In designing experiments.
- Not only in the psychology of reasoning
- A general tool to build and investigate CogSci models

(ロ) (同) (三) (三) (三) (○) (○)

- 1. In building cognitive theories;
- 2. In computational modeling;
- 3. In designing experiments.
- Not only in the psychology of reasoning
- A general tool to build and investigate CogSci models
- Complementary to dominating probabilistic approaches

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Logical engine of Bayesian modeling

- 1. In building cognitive theories;
- 2. In computational modeling;
- 3. In designing experiments.
- Not only in the psychology of reasoning
- A general tool to build and investigate CogSci models
- Complementary to dominating probabilistic approaches
- Logical engine of Bayesian modeling

Expensive experiments and messy computational models should be built upon more principled foundational approach.

(ロ) (同) (三) (三) (三) (○) (○)

Evaluating cognitive models

Along the following dimensions:

logical relationships, e.g., incompatibility or identity;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- explanatory power, e.g., what can be expressed;
- computational plausibility, e.g., tractability.

Outline

Introduction: Logic & Cognition research project

Taking Marr Seriously

Using Logic to Predict Behavior

Formalization Semantics of the task Descriptive complexity

Conclusions

Cognitive task f: initial state \longrightarrow desired state

Cognitive task f: initial state \longrightarrow desired state

- 1. Computational level:
 - specify cognitive task f
 - problems that a cognitive ability has to overcome

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Cognitive task f: initial state \longrightarrow desired state

- 1. Computational level:
 - specify cognitive task f
 - problems that a cognitive ability has to overcome
- 2. Algorithmic level:
 - the algorithms that are used to achieve a solution

▲□▶▲□▶▲□▶▲□▶ □ のQ@

compute f

Cognitive task f: initial state \longrightarrow desired state

- 1. Computational level:
 - specify cognitive task f
 - problems that a cognitive ability has to overcome
- 2. Algorithmic level:
 - the algorithms that are used to achieve a solution
 - compute f
- 3. Implementation level:
 - how this is actually done in neural activity

Marr. Vision: a computational investigation into the human representation and processing visual information, 1983

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Observation

Logical analysis informs about intrinsic properties of a problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Observation Logical analysis informs about intrinsic properties of a problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \hookrightarrow Level 1.5: using logic to predict behavior!

Observation Logical analysis informs about intrinsic properties of a problem.

 \hookrightarrow Level 1.5: using logic to predict behavior!

There is nothing as practical as good theory. (Lewin, 1951)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Introduction: Logic & Cognition research project

Taking Marr Seriously

Using Logic to Predict Behavior

Formalization Semantics of the task Descriptive complexity

Conclusions

Outline

Introduction: Logic & Cognition research project

Taking Marr Seriously

Using Logic to Predict Behavior Formalization

Semantics of the task Descriptive complexity

Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Example (False belief tasks)

1. Peter is shown a Smarties tube

Example (False belief tasks)

- 1. Peter is shown a Smarties tube
- 2. Smarties have been replaced by pencils

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example (False belief tasks)

- 1. Peter is shown a Smarties tube
- 2. Smarties have been replaced by pencils

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

3. "What do you think is inside the tube?"

Example (False belief tasks)

- 1. Peter is shown a Smarties tube
- 2. Smarties have been replaced by pencils

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 3. "What do you think is inside the tube?"
- 4. Peter answers: "Smarties!"

Example (False belief tasks)

- 1. Peter is shown a Smarties tube
- 2. Smarties have been replaced by pencils
- 3. "What do you think is inside the tube?"
- 4. Peter answers: "Smarties!"
- 5. The tube is then shown to contain pencils only.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example (False belief tasks)

- 1. Peter is shown a Smarties tube
- 2. Smarties have been replaced by pencils
- 3. "What do you think is inside the tube?"
- 4. Peter answers: "Smarties!"
- 5. The tube is then shown to contain pencils only.
- 6. "Before it was opened, what did you think was inside?"

(ロ) (同) (三) (三) (三) (○) (○)

Example (False belief tasks)

- 1. Peter is shown a Smarties tube
- 2. Smarties have been replaced by pencils
- 3. "What do you think is inside the tube?"
- 4. Peter answers: "Smarties!"
- 5. The tube is then shown to contain pencils only.
- 6. "Before it was opened, what did you think was inside?"

(ロ) (同) (三) (三) (三) (○) (○)

7. ???

Example (False belief tasks)

- 1. Peter is shown a Smarties tube
- 2. Smarties have been replaced by pencils
- 3. "What do you think is inside the tube?"
- 4. Peter answers: "Smarties!"
- 5. The tube is then shown to contain pencils only.
- 6. "Before it was opened, what did you think was inside?"
- 7. ???

Lambalgen & Stenning. Human reasoning and cognitive science, 2008

Braüner. Hybrid-Logical Reasoning in False-Belief Tasks, TARK 2013

Van Ditmarsch & Labuschagne. My Beliefs about Your Beliefs, Synthese 2007

(日) (日) (日) (日) (日) (日) (日)

Level 1.5: from formalization to actual reasoning

Level 1.5: from formalization to actual reasoning

Example (Using proof-theory)

Monotonicity calculus as processing model for syllogistic.

(ロ) (同) (三) (三) (三) (○) (○)

Shorter proof = simpler syllogism.

Geurts. Reasoning with quantifiers, Cognition, 2003

Level 1.5: from formalization to actual reasoning

Example (Using proof-theory)

- Monotonicity calculus as processing model for syllogistic.
- Shorter proof = simpler syllogism.

Geurts. Reasoning with quantifiers, Cognition, 2003

- Analytic tableaux for MasterMind game.
- Simpler proof = simpler game.

Gierasimczuk et al. Logical and psychological analysis of Mastermind, J. of Logic, Language, and Information, 2013

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

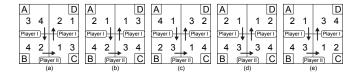
Outline

Introduction: Logic & Cognition research project

Taking Marr Seriously

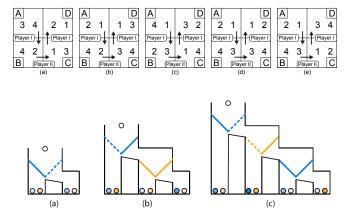
Using Logic to Predict Behavior Formalization Semantics of the task Descriptive complexity

Conclusions

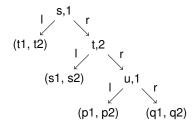

Level 1.5: more semantic approach

- To capture structural properties of the task
- Independent from particular formalization

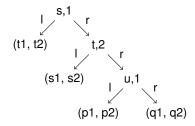
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @


Turn-based games

Turn-based games


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Turn-based games


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

MDG decision trees

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

MDG decision trees

Definition

G is generic, if for each player, distinct end nodes have different pay-offs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Question

Question What are the cognitively important structural properties?

Alternation type

Definition

Let's assume that the players strictly alternate in the game. Then:

- 1. In a Λ_1^i tree all the nodes are controlled by Player *i*.
- 2. In a Λ_k^i tree, *k*-alternations, starts with an *i*th Player node.

(ロ)、(型)、(E)、(E)、 E、のQの

Alternation type

Definition

Let's assume that the players strictly alternate in the game. Then:

- 1. In a Λ_1^i tree all the nodes are controlled by Player *i*.
- 2. In a Λ_k^i tree, *k*-alternations, starts with an *i*th Player node.

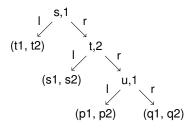


Figure : Λ_3^1 -tree

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Pay-off structure

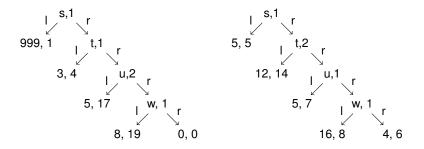


Figure : Two Λ_3^1 trees.

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - の々で

Pay-off structure

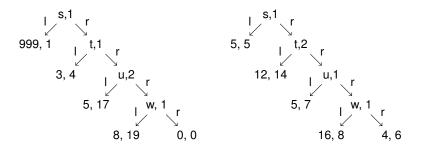


Figure : Two Λ_3^1 trees.

(日)

э

Forward reasoning + backtracking

T^- -example

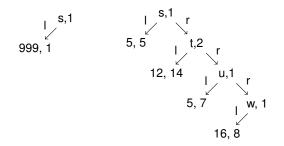
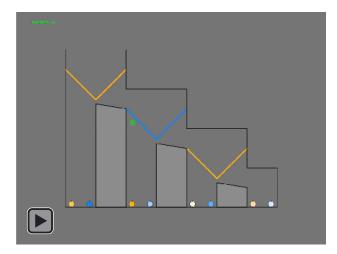


Figure : Λ_1^1 tree and Λ_3^1 tree

・ロト ・ 四ト ・ ヨト ・ ヨト

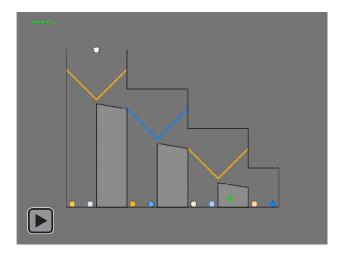
æ

Definition


If *T* is a generic game tree with the root node controlled by Player 1 (2) and *n* is the highest pay-off for Player 1 (2), then T^- is the minimal subtree of *T* containing the root node and the node with pay-off *n* for Player 1 (2).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Conjecture


Let us take two MDG trials T_1 and T_2 . T_1 is easier for participants than T_2 if and only if T_1^- is lower in the tree alternation hierarchy than T_2^- .

Experiment

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Experiment

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Results

- Structural properties responsible for the cognitive difficulty
- Results generalized to other turn-based games
- FRB avoids higher-order reasoning

Szymanik et al.. Using intrinsic complexity of turn-taking games to predict participantsÕ reaction times, CogSci 2013

Outline

Introduction: Logic & Cognition research project

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Taking Marr Seriously

Using Logic to Predict Behavior Formalization Semantics of the task Descriptive complexity

Conclusions

Practical computability

f: initial state \longrightarrow desired state

Practical computability

f: initial state \rightarrow desired state

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

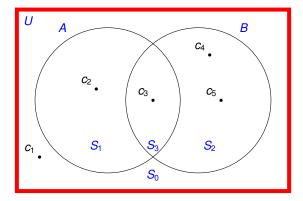
- computational resource constraints;
- realistic time and memory;
- bounded agency

Practical computability

f: initial state \rightarrow desired state

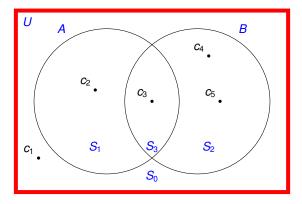
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- computational resource constraints;
- realistic time and memory;
- bounded agency
- → Level 1.5: computational properties


Simple sentences

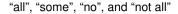
- 1. All poets have low self-esteem.
- 2. Some dean danced nude on the table.
- 3. At least 3 grad students prepared presentations.
- 4. An even number of the students saw a ghost.
- 5. Most of the students think they are smart.
- 6. Less than half of the students received good marks.
- 7. Many of the soldiers have not eaten for several days.

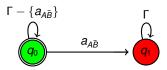
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@


8. A few of the conservatives complained about taxes.

Corresponding structures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

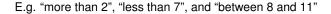

Corresponding structures

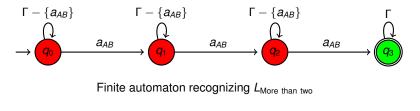


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

... and corresponding computations

Aristotelian quantifiers

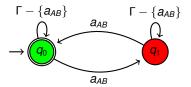



Finite automaton recognizing LAII

 $L_{AII} = \{ \alpha \in \Gamma^* : \#a_{A\bar{B}}(\alpha) = 0 \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Cardinal quantifiers

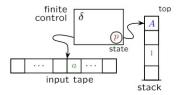


$$\mathcal{L}_{\mathsf{More than two}} = \{ \alpha \in \mathsf{F}^* : \# a_{\mathsf{AB}}(\alpha) > \mathsf{2} \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Parity quantifiers

E.g. "an even number", "an odd number"

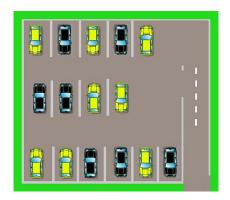

Finite automaton recognizing L_{Even}

$$L_{\mathsf{Even}} = \{ \alpha \in \Gamma^* : \#a_{AB}(\alpha) \text{ is even} \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

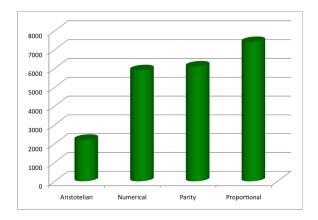
Proportional quantifiers

- E.g. "most", "less than half".
- ▶ Most *As are B* iff $card(A \cap B) > card(A B)$.
- $\flat \ \mathcal{L}_{\mathsf{Most}} = \{ \alpha \in \mathsf{F}^* : \# \mathbf{a}_{\mathsf{A}\mathsf{B}}(\alpha) > \# \mathbf{a}_{\mathsf{A}\bar{\mathsf{B}}}(\alpha) \}.$
- There is no finite automaton recognizing this language.
- We need internal memory.
- A push-down automata will do.


◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Does it say anything about processing?

Question Do minimal automata predict differences in verification?


A simple study

More than half of the cars are yellow.

▲□ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

ъ

Szymaniki & Zajenkowski, Comprehension of simple quantifiers. Empirical evaluation of a computational model, Cognitive Science, 2010

Neurobehavioral studies

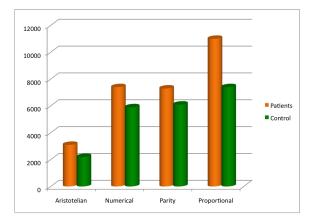
Differences in brain activity.

- All quantifiers are associated with numerosity: recruit right inferior parietal cortex.
- Only higher-order activate working-memory capacity: recruit right dorsolateral prefrontal cortex.

McMillan et al., Neural basis for generalized quantifiers comprehension, Neuropsychologia, 2005

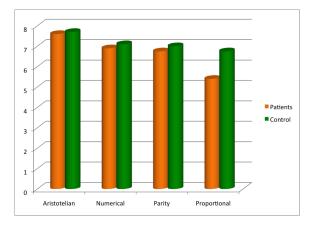
Szymanik, A Note on some neuroimaging study of natural language quantifiers comprehension, Neuropsychologia, 2007

(ロ) (同) (三) (三) (三) (○) (○)


Experiment with schizophrenic patients

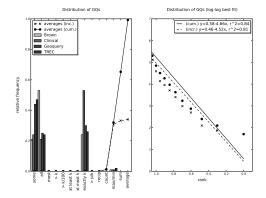
- Compare performance of:

 - Healthy subjects.Patients with schizophrenia.
 - Known WM deficits.


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

RT data

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○


Accuracy data

Zajenkowski et al., A computational approach to quantifiers as an explanation for some language impairments in schizophrenia, Journal of Communication Disorders, 2011.

Quantifier distribution in language

Distribution is skewed towards quantifiers of low complexity.

Thorne & Szymanik. Generalized Quantifier Distribution and Semantic Complexity, 2013.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

Introduction: Logic & Cognition research project

Taking Marr Seriously

Using Logic to Predict Behavior

Formalization Semantics of the task Descriptive complexity

Conclusions

► Computational awareness in logic of agency and semantics → CogSci.

Summary

- ► Computational awareness in logic of agency and semantics → CogSci.
- Radically beyond psychology of reasoning:
 - \hookrightarrow focusing on cognitive processes rather than on logical correctness

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- \hookrightarrow computational turn calls for sophisticated experiments
- → collaboration is needed more than ever!

Modern logics is a part of CogSci toolbox

- Modern logics is a part of CogSci toolbox
- ► It revolves around: interpretation, information, and computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Modern logics is a part of CogSci toolbox
- ► It revolves around: interpretation, information, and computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

It helps predict behavior

- Modern logics is a part of CogSci toolbox
- ► It revolves around: interpretation, information, and computation
- It helps predict behavior
- Logical perspective extends the notion of explanation in CogSci

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\blacktriangleright \ \hookrightarrow Level \ 1.5$

More examples and discussion

Isaac, Szymanik, and Verbrugge. Logic and Complexity in Cognitive Science, *Johan van Benthem on Logical and Informational Dynamics*, Trends in Logic, Outstanding Contributions book series, Springer 2013

Szymanik and Verbrugge (Eds). Special issue of *Journal of Logic, Language, and Information* on 'Logic and Cognition'

▲□▶▲□▶▲□▶▲□▶ □ のQ@

→ websites of various courses