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Divide between logic and psychology

I Kant: logical laws as the fabric of thoughts
I 19th century: logic=psychologism (Mill)
I Frege’s anti-psychologism enforced separation
I 19/20th century:

I Beginnings of modern logic
I Beginnings of modern psychology

I ’60 witness the growth of cognitive science
I but also: semantic and computational turn in logics.

↪→ interpretation and processing
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Modern logic should be a part of CogSci toolbox

1. In building cognitive theories;

2. In computational modeling;

3. In designing experiments.

I Not only in the psychology of reasoning
I A general tool to build and investigate CogSci models
I Complementary to dominating probabilistic approaches
I Logical engine of Bayesian modeling

Expensive experiments and messy computational models
should be built upon more principled foundational approach.
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Evaluating cognitive models

Along the following dimensions:
I logical relationships, e.g., incompatibility or identity;
I explanatory power, e.g., what can be expressed;
I computational plausibility, e.g., tractability.



Outline

Introduction: Logic & Cognition research project

Taking Marr Seriously

Using Logic to Predict Behavior
Formalization
Semantics of the task
Descriptive complexity

Conclusions



Information processing and 3 levels of Marr

Cognitive task f : initial state −→ desired state

1. Computational level:
I specify cognitive task f
I problems that a cognitive ability has to overcome

2. Algorithmic level:
I the algorithms that are used to achieve a solution
I compute f

3. Implementation level:
I how this is actually done in neural activity

Marr. Vision: a computational investigation into the human representation and processing visual information, 1983
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Extending levels of explanation in CogSci

Observation
Logical analysis informs about intrinsic properties of a problem.

↪→ Level 1.5: using logic to predict behavior!

There is nothing as practical as good theory.
(Lewin, 1951)
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Level 1: formalizing the task

Example (False belief tasks)

1. Peter is shown a Smarties tube

2. Smarties have been replaced by pencils

3. "What do you think is inside the tube?"

4. Peter answers: "Smarties!"

5. The tube is then shown to contain pencils only.

6. "Before it was opened, what did you think was inside?"

7. ???

Lambalgen & Stenning. Human reasoning and cognitive science, 2008

Braüner. Hybrid-Logical Reasoning in False-Belief Tasks, TARK 2013

Van Ditmarsch & Labuschagne. My Beliefs about Your Beliefs, Synthese 2007
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Level 1.5: from formalization to actual reasoning

Example (Using proof-theory)

I Monotonicity calculus as processing model for syllogistic.
I Shorter proof = simpler syllogism.

Geurts. Reasoning with quantifiers, Cognition, 2003

I Analytic tableaux for MasterMind game.
I Simpler proof = simpler game.

Gierasimczuk et al. Logical and psychological analysis of Mastermind, J. of Logic, Language, and Information, 2013
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Level 1.5: more semantic approach

I To capture structural properties of the task
I Independent from particular formalization
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MDG decision trees
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Definition
G is generic, if for each player, distinct end nodes have different pay-offs.
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Question

Question
What are the cognitively important structural properties?



Alternation type

Definition
Let’s assume that the players strictly alternate in the game. Then:

1. In a Λi
1 tree all the nodes are controlled by Player i .

2. In a Λi
k tree, k -alternations, starts with an i th Player node.
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Pay-off structure
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T−-example

s,1

999, 1

l
s,1

5, 5 t,2

12, 14 u,1

5, 7 w, 1

16, 8

l r

l r

l r

l

Figure : Λ1
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T−

Definition
If T is a generic game tree with the root node controlled by Player 1 (2) and n
is the highest pay-off for Player 1 (2), then T− is the minimal subtree of T
containing the root node and the node with pay-off n for Player 1 (2).



Conjecture

Let us take two MDG trials T1 and T2. T1 is easier for participants than T2 if
and only if T−

1 is lower in the tree alternation hierarchy than T−
2 .



Experiment






Experiment






Results

I Structural properties responsible for the cognitive difficulty
I Results generalized to other turn-based games
I FRB avoids higher-order reasoning

Szymanik et al.. Using intrinsic complexity of turn-taking games to predict participantsÕ reaction times, CogSci 2013
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Practical computability

f : initial state −→ desired state

I computational resource constraints;
I realistic time and memory;
I bounded agency

↪→ Level 1.5: computational properties
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Simple sentences

1. All poets have low self-esteem.

2. Some dean danced nude on the table.

3. At least 3 grad students prepared presentations.

4. An even number of the students saw a ghost.

5. Most of the students think they are smart.

6. Less than half of the students received good marks.

7. Many of the soldiers have not eaten for several days.

8. A few of the conservatives complained about taxes.



Corresponding structures

U A B

S0

S1 S2S3c1

c2
c3

c4

c5

. . . and corresponding computations
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Aristotelian quantifiers

“all”, “some”, “no”, and “not all”

q0 q1

Γ− {aAB̄}

aAB̄

Γ

Finite automaton recognizing LAll

LAll = {α ∈ Γ∗ : #aAB̄(α) = 0}



Cardinal quantifiers

E.g. “more than 2”, “less than 7”, and “between 8 and 11”

q0 q1 q2 q3

Γ− {aAB} Γ− {aAB} Γ− {aAB} Γ

aAB aAB aAB

Finite automaton recognizing LMore than two

LMore than two = {α ∈ Γ∗ : #aAB(α) > 2}



Parity quantifiers

E.g. “an even number”, “an odd number”

q0 q1

Γ− {aAB}

aAB

aAB
Γ− {aAB}

Finite automaton recognizing LEven

LEven = {α ∈ Γ∗ : #aAB(α) is even}



Proportional quantifiers

I E.g. “most”, “less than half”.
I Most As are B iff card(A ∩ B) > card(A− B).
I LMost = {α ∈ Γ∗ : #aAB(α) > #aAB̄(α)}.
I There is no finite automaton recognizing this language.
I We need internal memory.
I A push-down automata will do.



Does it say anything about processing?

Question
Do minimal automata predict differences in verification?



A simple study

More than half of the cars are yellow.



Szymaniki & Zajenkowski, Comprehension of simple quantifiers. Empirical evaluation of a computational model, Cognitive

Science, 2010



Neurobehavioral studies

Differences in brain activity.
I All quantifiers are associated with numerosity:

recruit right inferior parietal cortex.
I Only higher-order activate working-memory capacity:

recruit right dorsolateral prefrontal cortex.

McMillan et al., Neural basis for generalized quantifiers comprehension, Neuropsychologia, 2005

Szymanik, A Note on some neuroimaging study of natural language quantifiers comprehension, Neuropsychologia, 2007



Experiment with schizophrenic patients

I Compare performance of:
I Healthy subjects.
I Patients with schizophrenia.

I Known WM deficits.



RT data



Accuracy data

Zajenkowski et al., A computational approach to quantifiers as an explanation for some language impairments in schizophrenia,

Journal of Communication Disorders, 2011.



Quantifier distribution in language

Distribution is skewed towards quantifiers of low complexity.
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Thorne & Szymanik. Generalized Quantifier Distribution and Semantic Complexity, 2013.
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Summary

I Computational awareness in logic of agency and semantics ↪→ CogSci.

I Radically beyond psychology of reasoning:
↪→ focusing on cognitive processes rather than on logical correctness
↪→ computational turn calls for sophisticated experiments
↪→ collaboration is needed more than ever!
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I It revolves around: interpretation, information, and computation
I It helps predict behavior
I Logical perspective extends the notion of explanation in CogSci
I ↪→ Level 1.5
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More examples and discussion

Isaac, Szymanik, and Verbrugge. Logic and Complexity in Cognitive Science, Johan van
Benthem on Logical and Informational Dynamics, Trends in Logic, Outstanding Contributions
book series, Springer 2013

Szymanik and Verbrugge (Eds). Special issue of Journal of Logic, Language, and Information
on ‘Logic and Cognition’

↪→ websites of various courses
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