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I f: initial state −→ desired state
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I the algorithms that may be used to achieve a solution
I compute f

3. Implementation level:
I how this is actually done in neural activity

Marr, Vision: a computational investigation into the human representation and
processing visual information, 1983



Classically 3 levels of Marr

1. Computational level:
I specify cognitive task:

I f: initial state −→ desired state
I problems that a cognitive ability has to overcome

2. Algorithmic level:
I the algorithms that may be used to achieve a solution
I compute f

3. Implementation level:
I how this is actually done in neural activity

Marr, Vision: a computational investigation into the human representation and
processing visual information, 1983



Classically 3 levels of Marr

1. Computational level:
I specify cognitive task:

I f: initial state −→ desired state
I problems that a cognitive ability has to overcome

2. Algorithmic level:
I the algorithms that may be used to achieve a solution
I compute f

3. Implementation level:
I how this is actually done in neural activity

Marr, Vision: a computational investigation into the human representation and
processing visual information, 1983



Extending Classical Perspective

Observation
Logical analysis informs about intrinsic properties of a problem.

↪→ Level 1.5



Extending Classical Perspective

Observation
Logical analysis informs about intrinsic properties of a problem.

↪→ Level 1.5



Extending Classical Perspective

Observation
Logical analysis informs about intrinsic properties of a problem.

↪→ Level 1.5



Outline

Introduction

From Level 1 to Level 1.5
Gathering data and searching for a model
Testing hierarchical predictions

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions



Outline

Introduction

From Level 1 to Level 1.5
Gathering data and searching for a model
Testing hierarchical predictions

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions



Mastermind

The game consists of:
I a decoding board;
I code pegs of n colours;
I key (feedback) pegs (black and white).

Players:
I The codemaker: chooses a secret pattern.
I The codebreaker: guesses the pattern.



Mastermind

Moves:
I Each guess: placing a row of code pegs.
I The codemaker provides feedback.

I Black key for each code peg of correct
color and position.

I White key for each peg of correct color
but wrong position.

I After that another guess is made.

Winning conditions for k rounds:
I The codebreaker: obtains the solution within

k rounds.
I The codemaker: otherwise.



Mastermind: an inductive inquiry game

I Trials of experimentation and evaluation.
I Interactive game.
I How to transform it into a reasoning task?
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MM in Rekentuin

I massive data bank (over 150 schools in The Netherlands);
I the next step: a logical reasoning system;
I perhaps similar to the one for syllogisms.

Gierasimczuk et al., Static Mastermind in Rekentuin. A computational, logical,
and cognitive perspective, under construction



Syllogistic Reasoning: Meta-data analysis

Chater and Oaksford, The probability heuristic model of syllogistic reasoning,
Cognitive Psychology, 1999



Monotonicity calculus

I Logic rendering many valid arguments.
I Including syllogistic.
I Pivoting on monotonicity, e.g.,

Rule 1 Rule 2 Example 1 Example 2
α =⇒ β β =⇒ α all(A,B) all(C,B)
. . . α+ . . . . . . α− . . . some(A+,C) no(B−,A)
. . . β+ . . . . . . β− . . . some(B+,C) no(C−,A)

Conversion No/All-not
Q(A,B) no(A, B)

Q(B,A), Q = some all(A, not B)
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3. some(A,B+) Conv from 2
4. all(B,not C) No/All-not from 1
5. some(A,not C) Mon from 3 and 4
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2. It gives a good fit with data.
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Complexity of quantifiers

Definability Examples Recognized by

FO “all”, “at least 3” acyclic FA
FO(Dn) “an even number” FA

PrA “most”, “less than half” PDA

Quantifiers, definability, and complexity of automata

Van Benthem, Essays in logical semantics, 1986.

Mostowski, Computational semantics for monadic quantifiers, 1998.
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not-b

At least 3 flowers are blue.

q0 q1 q2 q3
b b b
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Does it say anything about processing?

Question
Do minimal automata predict differences in verification?



Complexity and reaction time

Szymaniki & Zajenkowski, Comprehension of simple quantifiers. Empirical
evaluation of a computational model, Cognitive Science, 2010
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I Patients with schizophrenia.

I Known working memory deficits.
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Accuracy data

Zajenkowski et al., A computational approach to quantifiers as an explanation for
some language impairments in schizophrenia, under review.



Tractability/Intractability:
extending difficulty/complexity analogy

1. Most villagers and most townsmen hate each other.

2. All/Most of the dots are connected to each other.

Conjecture
Subjects avoid intractable interpretations.

Gierasimczuk and Szymanik, Branching quantification vs. two-way quantification,
Journal of Semantics, 2009

Szymanik, Computational Complexity of Polyadic Lifts of Generalized Quantifiers
in Natural Language, Linguistics and Philosophy, 2010.

Bott et al., Interpreting Tractable versus Intractable Reciprocal Sentences,
Proceedings of the International Conference on Computational Semantics, 2011.
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Higher-order social reasoning

Marble Drop Game

http://www.ai.rug.nl/~meijering/marble_drop.html


Question

I Subjects are good in second-order reasonings
(Mean Acc =0,91; Mean RT=7.8).

I And they even get better with training.

Question
How are they doing it? Do they apply backward induction?

Question
How can we try to answer the question?
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Results

Data consistent with AOIs: 1234 against BI hypothesis!

Meijering et al., Context facilitates theory of mind: What eye movements tell about
higher-order strategic reasoning, 2011.
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McMillan et al. fMRI studies

Differences in brain activity.

I All quantifiers are associated with numerosity:
recruit right inferior parietal cortex.

I Only higher-order activate working-memory capacity:
recruit right dorsolateral prefrontal cortex.

McMillan et al., Neural basis for generalized quantifiers comprehension, 2005

Szymanik, A Note on some neuroimaging study of natural language quantifiers
comprehension, Neuropsychologia, 2007

Szymanik & Zajenkowski, Quantifiers and working memory, LNCS, 2010
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To sum up

Level 1.5 Mastermind, Syllogisms, Verification
Level 2 Marble Drop Game
Level 3 Quantifiers and Definability



Discussion

I Adequacy of Marr’s Levels.
I Idealized logical agents.
I How to measure difficulty?
I Logic & CogSci: can the benefits be mutual?





Static Mastermind (Chvatal 1983)

I finding the minimum number of guesses the codebreaker
can make all at once at the beginning of the game;

I without waiting for the answers;
I and upon receiving the answers;
I completely determine the code in the next guess.

Observation (Greenwell 1999)
Static Mastermind (n = 6, ` = 4) can be solved with six initial guesses. In particular:
(1, 2, 2, 1), (2, 3, 5, 4), (3, 3, 1, 1), (4, 5, 2, 4), (5, 6, 5, 6), (6, 6, 4, 3).

Conjecture
It is not possible to reduce to five (exhaustive check: approx 3.7× 1015 computations).



Static Mastermind: Computational Complexity

Mastermind (satisfiability) decision problem:
Input A set of guesses G and their corresponding

scores.
Question Is there at least one valid solution?

Theorem
Mastermind Problem in NP-complete wrt ` (positions).
Objective computational measure!



Monotonicity profiles determine difficulty

1. Some of the sopranos sang with more than three of the tenors.

2. None of the sopranos sang with fewer than three of the tenors.

3. Some of the sopranos sang with fewer than three of the tenors.

Q1A played against Q2B
All B were C.

Q1A played against Q2C

↑ Q1 ↑ Q2 <↓ Q1 ↓ Q2 <
↑ Q1 ↓ Q2

↓ Q1 ↑ Q2

Geurts and Van der Slik, Monotonicity and Processing Load, Journal of
Semantics, 2005
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P-Cognition Thesis

Hypothesis
Human cognitive (linguistic) capacities are constrained by
polynomial time computability.

Frixione, Tractable competence. Minds and Machines, 2001.



Hintikka’s branching reading

I Most girls and most boys hate each other.

most x : G(x)
most y : B(y)

H(x , y).

∃A∃A′[most(G,A) ∧most(B,A′) ∧ ∀x ∈ A ∀y ∈ A′ H(x , y)].



Illustration

I Most girls and most boys hate each other.

♀

♀

♀

♂

♂

♂



Branching readings are intractable

Theorem
Proportional branching sentences are NP-complete.

What about a tractable alternative?



Two-way quantification

(Q1Q2) ∧ (Q2Q1)

Subjects are happy to accept such interpretation.

Gierasimczuk and Szymanik, Branching quantification vs. two-way quantification,
Journal of Semantics, 2009
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