Logic and Cognition

Nina Gierasimczuk Jakub Szymanik

Logic and Philosophy Today Delhi, January 6, 2011

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Introduction

From Level 1 to Level 1.5

Gathering data and searching for a model Testing hierarchical predictions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

Outline

Introduction

From Level 1 to Level 1.5

Gathering data and searching for a model Testing hierarchical predictions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

Goals of the talk

Discuss examples of:

Goals of the talk

Discuss examples of:

1. Logics motivated by CogSci;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Discuss examples of:

- 1. Logics motivated by CogSci;
- 2. Experiments motivated by logics;

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Discuss examples of:

- 1. Logics motivated by CogSci;
- 2. Experiments motivated by logics;
- 3. Selection of experimental methods.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

How can logic contribute?

1. In building cognitive theories;

How can logic contribute?

1. In building cognitive theories;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2. In computational modeling;

How can logic contribute?

1. In building cognitive theories;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2. In computational modeling;
- 3. In designing experiments.

Classically 3 levels of Marr

- 1. Computational level:
 - specify cognitive task:
 - f: initial state \longrightarrow desired state
 - problems that a cognitive ability has to overcome

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Classically 3 levels of Marr

- 1. Computational level:
 - specify cognitive task:
 - f: initial state \longrightarrow desired state
 - problems that a cognitive ability has to overcome
- 2. Algorithmic level:
 - the algorithms that may be used to achieve a solution

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

compute f

Classically 3 levels of Marr

- 1. Computational level:
 - specify cognitive task:
 - f: initial state \longrightarrow desired state
 - problems that a cognitive ability has to overcome
- 2. Algorithmic level:
 - the algorithms that may be used to achieve a solution
 - compute f
- 3. Implementation level:
 - how this is actually done in neural activity

Marr, Vision: a computational investigation into the human representation and processing visual information, $1983\,$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Extending Classical Perspective

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

Extending Classical Perspective

Observation Logical analysis informs about intrinsic properties of a problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Extending Classical Perspective

Observation Logical analysis informs about intrinsic properties of a problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \hookrightarrow Level 1.5

Outline

Introduction

From Level 1 to Level 1.5

Gathering data and searching for a model Testing hierarchical predictions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

Outline

Introduction

From Level 1 to Level 1.5 Gathering data and searching for a model Testing hierarchical predictions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

Mastermind

The game consists of:

- a decoding board;
- code pegs of n colours;
- key (feedback) pegs (black and white).

Players:

- > The codemaker: chooses a secret pattern.
- The codebreaker: guesses the pattern.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Mastermind

Moves:

- Each guess: placing a row of code pegs.
- The codemaker provides feedback.
 - Black key for each code peg of correct color and position.
 - White key for each peg of correct color but wrong position.
- After that another guess is made.

Winning conditions for k rounds:

- The codebreaker: obtains the solution within k rounds.
- The codemaker: otherwise.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Mastermind: an inductive inquiry game

- Trials of experimentation and evaluation.
- Interactive game.
- How to transform it into a reasoning task?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MM Setting in Rekentuin

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

MM Setting in Rekentuin

MM in Rekentuin

- massive data bank (over 150 schools in The Netherlands);
- the next step: a logical reasoning system;
- perhaps similar to the one for syllogisms.

Gierasimczuk et al., Static Mastermind in Rekentuin. A computational, logical, and cognitive perspective, under construction

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Syllogistic Reasoning: Meta-data analysis

Table 1

Percentage of times each syllogistic conclusion was endorsed according to the meta-analysis by Chater and Oaksford (1999)^a

premisses	conclusion		premisses	conclusion			n	premisses	conclusion			n
& figure	AIE	0	& figure	A	Ι	Ε	0	& figure	A	Ι	E	0
AA1	90 5 C	0	AO1	1	6	1	57	IO1	3	4	1	30
AA2	58 8 1	1	AO2	0	6	3	67	IO2	1	5	4	37
AA3	57 29 0	0	AO3	0	10	0	66	IO3	0	9	1	29
AA4	75 16 1	1	A04	0	5	3	72	IO4	0	5	1	44
AI1	0 92 3	3	OA1	0	3	3	68	OI1	4	6	0	35
AI2	0 57 3	11	OA2	0	11	5	56	OI2	0	8	3	35
AI3	1 89 1	3	OA3	0	15	3	69	OI3	1	9	1	31
AI4	0 71 0	1	OA4	1	3	6	27	OI4	3	8	2	29
IA1	0 72 0	6	II1	0	41	3	4	EE1	0	1	34	1
IA2	13 49 3	12	112	1	42	3	3	EE2	3	3	14	3
IA3	2 85 1	4	113	0	24	3	1	EE3	0	0	18	3
IA4	0 91 1	1	II4	0	42	0	1	EE4	0	3	31	1
AE1	0 3 5) 6	IE1	1	1	22	16	EO1	1	8	8	23
AE2	0 0 8	3 1	IE2	0	0	39	30	EO2	0	13	7	11
AE3	0 1 6	13	IE3	0	1	30	33	EO3	0	0	9	28
AE4	0 3 8	72	IE4	0	1	28	44	EO4	0	5	8	12
EA1	0 1 8	7 3	EI1	0	5	15	66	OE1	1	0	14	5
EA2	0 0 8) 3	EI2	1	1	21	52	OE2	0	8	11	16
EA3	0 0 64	1 22	EI3	0	6	15	48	OE3	0	5	12	18
EA4	1 3 6	8	EI4	0	2	32	27	OE4	0	19	9	14
								001	1	8	1	22
1	A = all	E =	no					002	0	16	5	10
1	= some	O =	some no	t –				003	1	6	0	15
								004	1	4	1	25

^a All figures have been rounded to the nearest integer; valid conclusions are shaded. Whenever two conclusions in the same row are valid, only the first one is valid in predicate logic.

Chater and Oaksford, The probability heuristic model of syllogistic reasoning, Cognitive Psychology, 1999

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Monotonicity calculus

Logic rendering many valid arguments.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Including syllogistic.
- Pivoting on monotonicity, e.g.,

Monotonicity calculus

- Logic rendering many valid arguments.
- Including syllogistic.
- Pivoting on monotonicity, e.g.,

Rule 1	Rule 2	Example 1	Example 2
$\alpha \implies \beta$	$\beta \implies \alpha$	all(A, B)	all(C,B)
$\ldots \alpha^+ \ldots$	$\ldots \alpha^{-} \ldots$	some(A ⁺ , C)	no(B ⁻ , A)
$\dots \beta^+ \dots$	$\dots \beta^{-} \dots$	$some(B^+, C)$	no(C ⁻ , A)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Monotonicity calculus

- Logic rendering many valid arguments.
- Including syllogistic.
- Pivoting on monotonicity, e.g.,

Conversion	No/All-not
Q(<i>A</i> , <i>B</i>)	no(A, B)
Q(B, A), Q = some	all(A, not B)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Example

- 1. no(B, C) premiss
- 2. *some*(*B*, *A*) premiss

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

- 1. no(B, C) premiss
- 2. *some*(*B*, *A*) premiss
- 3. $some(A, B^+)$ Conv from 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

- 1. no(B, C) premiss
- 2. *some*(*B*, *A*) premiss
- 3. $some(A, B^+)$ Conv from 2
- 4. all(B, not C) No/All-not from 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example

- 1. no(B, C) premiss
- 2. *some*(*B*, *A*) premiss
- 3. $some(A, B^+)$ Conv from 2
- 4. all(B, not C) No/All-not from 1
- 5. *some*(*A*, *not C*) Mon from 3 and 4

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1. The shorter the proof the easier the syllogism.

1. The shorter the proof the easier the syllogism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▶ Level 1.5,

- 1. The shorter the proof the easier the syllogism.
 - Level 1.5,
 - Rule application may be empirically weighted,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 1. The shorter the proof the easier the syllogism.
 - ▶ Level 1.5,
 - Rule application may be empirically weighted,
- 2. It gives a good fit with data.

Table 4

Predicted difficulty of valid syllogisms according to the model described in the text, compared with Chater and Oaksford's scores (in parentheses)

AA1A	80	(90)	OA3O	70	(69)	EA10	40	(3)
EA1E	80	(87)	AO2O	70	(67)	EA2O	40	(3)
EA2E	80	(89)	EI1O	60	(66)	EA3O	40	(22)
AE2E	80	(88)	EI2O	60	(52)	EA4O	40	(8)
AE4E	80	(87)	EI3O	60	(48)	AE2O	40	(1)
IA3I	80	(85)	EI4O	60	(27)	AE4O	40	(2)
IA4I	80	(91)	AA1I	60	(5)			
AI1I	80	(92)	AA3I	60	(29)			
AI3I	80	(89)	AA4I	60	(16)			

Geurts, Reasoning with quantifiers, Cognition, 2003
Outline

Introduction

From Level 1 to Level 1.5 Gathering data and searching for a model Testing hierarchical predictions

(ロ) (同) (三) (三) (三) (○) (○)

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

Complexity of quantifiers

Definability	Examples	Recognized by
FO	"all", "at least 3"	acyclic FA
$FO(D_n)$	"an even number"	FA
PrA	"most", "less than half"	PDA

Quantifiers, definability, and complexity of automata

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Van Benthem, Essays in logical semantics, 1986.

Mostowski, Computational semantics for monadic quantifiers, 1998.

All flowers are blue.

All flowers are blue.

At least 3 flowers are blue.

All flowers are blue.

At least 3 flowers are blue.

Most of the flowers are blue.

Does it say anything about processing?

Question Do minimal automata predict differences in verification?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Complexity and reaction time

Szymaniki & Zajenkowski, Comprehension of simple quantifiers. Empirical evaluation of a computational model, Cognitive Science, 2010

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Compare performance of:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Compare performance of:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Healthy subjects.

- Compare performance of:
 - Healthy subjects.
 - Patients with schizophrenia.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Compare performance of:
 - Healthy subjects.
 - Patients with schizophrenia.
 - Known working memory deficits.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

RT data

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Accuracy data

Zajenkowski et al., A computational approach to quantifiers as an explanation for some language impairments in schizophrenia, under review.

Tractability/Intractability:

extending difficulty/complexity analogy

- 1. Most villagers and most townsmen hate each other.
- 2. All/Most of the dots are connected to each other.

Conjecture

Subjects avoid intractable interpretations.

- Gierasimczuk and Szymanik, Branching quantification vs. two-way quantification, Journal of Semantics, 2009
- Szymanik, Computational Complexity of Polyadic Lifts of Generalized Quantifiers in Natural Language, Linguistics and Philosophy, 2010.
- Bott et al., Interpreting Tractable versus Intractable Reciprocal Sentences, Proceedings of the International Conference on Computational Semantics, 2011.

Outline

Introduction

From Level 1 to Level 1.5

Gathering data and searching for a model Testing hierarchical predictions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

Higher-order social reasoning

Marble Drop Game

Question

 Subjects are good in second-order reasonings (Mean Acc =0,91; Mean RT=7.8).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

And they even get better with training.

Question

- Subjects are good in second-order reasonings (Mean Acc =0,91; Mean RT=7.8).
- And they even get better with training.

Question

How are they doing it? Do they apply backward induction?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Question

- Subjects are good in second-order reasonings (Mean Acc =0,91; Mean RT=7.8).
- And they even get better with training.

Question

How are they doing it? Do they apply backward induction?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Question

How can we try to answer the question?

Registering subjects' behavior.

Registering subjects' behavior.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Tracking eye fixations.

- Registering subjects' behavior.
- Tracking eye fixations.
- Using BI suggests fixation pattern:
 - Bin 4, 3, next Bin 2, finally Bin 1.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Registering subjects' behavior.
- Tracking eye fixations.
- Using BI suggests fixation pattern:
 - Bin 4, 3, next Bin 2, finally Bin 1.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Area of Interests pattern for BI:
 - 4321
 - 3421

Results

Data consistent with AOIs: 1234 against BI hypothesis!

Meijering et al., Context facilitates theory of mind: What eye movements tell about higher-order strategic reasoning, 2011.

イロト イポト イヨト イヨト

3

Outline

Introduction

From Level 1 to Level 1.5

Gathering data and searching for a model Testing hierarchical predictions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

McMillan et al. fMRI studies

Differences in brain activity.

McMillan et al. fMRI studies

Differences in brain activity.

- All quantifiers are associated with numerosity: recruit right inferior parietal cortex.
- Only higher-order activate working-memory capacity: recruit right dorsolateral prefrontal cortex.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

McMillan et al. fMRI studies

Differences in brain activity.

- All quantifiers are associated with numerosity: recruit right inferior parietal cortex.
- Only higher-order activate working-memory capacity: recruit right dorsolateral prefrontal cortex.

McMillan et al., Neural basis for generalized quantifiers comprehension, 2005

Szymanik, A Note on some neuroimaging study of natural language quantifiers comprehension, Neuropsychologia, 2007

Outline

Introduction

From Level 1 to Level 1.5

Gathering data and searching for a model Testing hierarchical predictions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Looking for familiar algorithms (Level 2)

Designing level 3 experiments

Discussion and Conclusions

To sum up

Level 1.5 Mastermind, Syllogisms, Verification Level 2 Marble Drop Game Level 3 Quantifiers and Definability

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Discussion

- Adequacy of Marr's Levels.
- Idealized logical agents.
- How to measure difficulty?
- Logic & CogSci: can the benefits be mutual?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

धन्यवाद

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Static Mastermind (Chvatal 1983)

- finding the minimum number of guesses the codebreaker can make all at once at the beginning of the game;
- without waiting for the answers;
- and upon receiving the answers;
- completely determine the code in the next guess.

Observation (Greenwell 1999)

Static Mastermind ($n = 6, \ell = 4$) can be solved with six initial guesses. In particular: (1, 2, 2, 1), (2, 3, 5, 4), (3, 3, 1, 1), (4, 5, 2, 4), (5, 6, 5, 6), (6, 6, 4, 3).

Conjecture

It is not possible to reduce to five (exhaustive check: approx 3.7×10^{15} computations).

(日) (日) (日) (日) (日) (日) (日)

Static Mastermind: Computational Complexity

Mastermind (satisfiability) decision problem:

Input A set of guesses *G* and their corresponding scores.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Question Is there at least one valid solution?

Theorem

Mastermind Problem in NP-complete wrt ℓ (positions).

Objective computational measure!

Monotonicity profiles determine difficulty

- 1. Some of the sopranos sang with more than three of the tenors.
- 2. None of the sopranos sang with fewer than three of the tenors.
- 3. Some of the sopranos sang with fewer than three of the tenors.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Monotonicity profiles determine difficulty

- 1. Some of the sopranos sang with more than three of the tenors.
- 2. None of the sopranos sang with fewer than three of the tenors.
- 3. Some of the sopranos sang with fewer than three of the tenors.

 $Q_1 A$ played against $Q_2 B$ All B were C. $Q_1 A$ played against $Q_2 C$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Monotonicity profiles determine difficulty

- 1. Some of the sopranos sang with more than three of the tenors.
- 2. None of the sopranos sang with fewer than three of the tenors.
- 3. Some of the sopranos sang with fewer than three of the tenors.

 $Q_1 A$ played against $Q_2 B$ All B were C. $Q_1 A$ played against $Q_2 C$

$$\uparrow \mathsf{Q}_1 \uparrow \mathsf{Q}_2 < \downarrow \mathsf{Q}_1 \downarrow \mathsf{Q}_2 < \begin{array}{c} \uparrow \mathsf{Q}_1 \downarrow \mathsf{Q}_2 \\ \downarrow \mathsf{Q}_1 \uparrow \mathsf{Q}_2 \end{array}$$

Geurts and Van der Slik, Monotonicity and Processing Load, Journal of Semantics, 2005

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion Automata model is psychologically plausible.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conclusion Automata model is psychologically plausible.

Conclusion Computational complexity \approx cognitive difficulty.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion Automata model is psychologically plausible.

Conclusion Computational complexity \approx cognitive difficulty.

As far as we know this is the first empirical proof.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Automata model is psychologically plausible.

Conclusion

Computational complexity \approx cognitive difficulty.

As far as we know this is the first empirical proof.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Between Marr's level 1 and 2.

P-Cognition Thesis

Hypothesis

Human cognitive (linguistic) capacities are constrained by polynomial time computability.

Frixione, Tractable competence. Minds and Machines, 2001.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hintikka's branching reading

Most girls and most boys hate each other.

most x : G(x)most y : B(y) H(x, y).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\exists A \exists A' [\mathsf{most}(G, A) \land \mathsf{most}(B, A') \land \forall x \in A \ \forall y \in A' \ H(x, y)].$

Illustration

Most girls and most boys hate each other.

Branching readings are intractable

Theorem Proportional branching sentences are NP-complete.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

What about a tractable alternative?

Two-way quantification

 $\left(Q_1Q_2\right)\wedge\left(Q_2Q_1\right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two-way quantification

 $\left(Q_1Q_2\right)\wedge\left(Q_2Q_1\right)$

Subjects are happy to accept such interpretation.

Gierasimczuk and Szymanik, Branching quantification vs. two-way quantification, Journal of Semantics, 2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@