
COLLECTIVE QUANTIFICATION,
TYPE-SHIFTING, AND COMPLEXITY

Jakub Szymanik

Institute for Logic, Language and Computation
Universiteit van Amsterdam

LUSH
April 23, 2009



ABSTRACT

The common strategy in formalizing collective quantification
has been to define the meanings of collective determiners using
certain type-shifting operations. These type-shifting operations,
i.e., lifts, define the collective interpretations of determiners
systematically from the standard meanings of quantifiers. We
argue that this approach is probably not expressive enough to
formalize all collective quantification in natural language!
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MOTIVATIONS

• Expressivity of a language depends on the quantifiers.
• Mainly distributive determiners are considered.
• However, plural objects are becoming important.
• E.g. in game-theory, where groups of agents are acting.



COLLECTIVITY

(1.) All the Knights but King Arthur met in secret.
(2.) Most climbers are friends.
(3.) John and Mary love each other.
(4.) The samurai were twelve in number.
(5.) Many girls gathered.
(6.) Soldiers surrounded the Alamo.
(7.) Tikitu and Samson lifted the table.
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LET’S START WITH EXAMPLES

(1.) Five people lifted the table.
(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.
(2’.) ∃X [X ⊆ Students ∧ Play(X )].
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EXISTENTIAL MODIFIER

DEFINITION (VAN DER DOES 1992)

Fix a universe of discourse U and take any X ⊆ U and
Y ⊆ P(U). Define the existential lift QEM of a quantifier Q in the
following way:

QEM(X ,Y ) is true ⇐⇒ ∃Z ⊆ X [Q(X ,Z ) ∧ Z ∈ Y ].
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VAN BENTHEM PROBLEM

OBSERVATION

(·)EM works only for right monotone increasing quantifiers.

(1.) No students met yesterday at the coffee shop.
— ↓MON↓ ↑MON↑

(2.) No left-wing students met yesterday at the coffee shop.
(3.) No students met yesterday at the “Che” coffee shop.
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THE TOTAL NUMBER IS MISSING

(1.) Exactly 5 students drank a whole keg of beer together.
(1’.) (∃=5)EM [Student,Drink-a-whole-keg-of-beer].
(1”.) ∃A ⊆ Student[card(A) = 5 ∧ Drink-a-whole-keg-of-beer(A)]
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NEUTRAL MODIFIER

DEFINITION (VAN DER DOES 1992)

Let U be a universe, X ⊆ U, Y ⊆ P(U), and Q a type (1, 1)
quantifier. We define the neutral modifier:

QN [X ,Y ] is true ⇐⇒ Q
[
X ,
⋃

(Y ∩ P(X ))
]
.



...BUT WHAT ABOUT SPLITTED GROUPS?

(1.) Exactly 5 students drank a whole keg of beer together.
(1’.) (∃=5)N [Student,Drink-a-whole-keg-of-beer].

card
({

x |∃A ⊆ Student[x ∈ A∧Drink-a-whole-keg-of-beer(A)]
})

= 5.
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MONOTONICITY PRESERVETION UNDER (·)N

FACT (BEN-AVI AND WINTER 2003)

Let Q be a distributive determiner. If Q belongs to one of the
classes ↑MON↑, ↓MON↓, MON↑, MON↓, then the collective
determiner QN belongs to the same class. Moreover, if Q is
conservative and ∼MON (MON∼), then QN is also ∼MON
(MON∼).



DETERMINER FITTING

DEFINITION (WINTER 2001)

For all X ,Y ⊆ P(U) we have that

Qdfit(X ,Y ) is true

⇐⇒

Q[∪X ,∪(X ∩ Y )] ∧ [X ∩ Y = ∅ ∨ ∃W ∈ X ∩ Y ∧Q(∪X ,W )].
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IT REALLY WORKS...

Monotonicity of Q Monotonicity of Qdfit Example

↑MON↑ ↑MON↑ Some
↓MON↓ ↓MON↓ Less than five
↓MON↑ ∼MON↑ All
↑MON↓ ∼MON↓ Not all
∼MON∼ ∼MON∼ Exactly five
∼MON↓ ∼MON↓ Not all and less than five
∼MON↑ ∼MON↑ Most
↓MON∼ ∼MON∼ All or less than five
↑MON∼ ∼MON∼ Some but not all

TABLE: Monotonicity under the determiner fitting operator; cf.
(Ben-Avi and Winter 2003).



...BUT VIOLATES INVARIANCE PROPERTIES

DEFINITION

A distributive determiner of type (1, 1) is conservative if and
only if the following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,A ∩ B].

FACT

For every Q the quantifiers QEM , QN , and Qdfit are not CONS.
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...AND NOT ONLY BECAUSE OF TECHNICALITIES

DEFINITION

We say that a collective determiner Q of type ((et)(((et)t)t))
satisfies collective conservativity iff the following holds for all M
and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,P(A) ∩ B].

FACT

For every Q the collective quantifiers QEM , QN , and Qdfit satisfy
collective conservativity.



...AND NOT ONLY BECAUSE OF TECHNICALITIES

DEFINITION

We say that a collective determiner Q of type ((et)(((et)t)t))
satisfies collective conservativity iff the following holds for all M
and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,P(A) ∩ B].

FACT

For every Q the collective quantifiers QEM , QN , and Qdfit satisfy
collective conservativity.



OUTLINE

1 INTRODUCTION

2 LIFTING FIRST-ORDER DETERMINERS

3 GENERALIZED QUANTIFIERS

4 DEFINING COLLECTIVE DETERMINERS

5 COLLECTIVE MAJORITY

6 DISCUSSION



LINDSTRÖM QUANTIFIERS

∀ = {(M,P) | P = M}.
∃ = {(M,P) | P ⊆ M & P 6= ∅}.

even = {(M,P) | P ⊆ M & card(P) is even}.
most = {(M,P,S) | P,S ⊆ M & card(P ∩ S) > card(P − S)}.

some = {(M,P,S) | P,S ⊆ M & P ∩ S 6= ∅}.



SECOND-ORDER GQS

∃2 = {(M,P) | P ⊆ P(M) & P 6= ∅}.
EVEN = {(M,P) | P ⊆ P(M) & card(P) is even}.
EVEN′ = {(M,P) | P ⊆ P(M) & ∀X ∈ P(card(X ) is even)}.
MOST = {(M,P,S) | P,S ⊆ P(M) & card(P ∩ S) > card(P − S)}.

OBSERVATION

SOGQs do not decide invariance properties!

QUESTION

How invariance properties interact with definability?
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WARNING!

Do not confuse:
• FO GQs (Lindström) with FO-definable quantifiers

E.G. most is FO GQs but is not FO-definable.
• SO GQs with SO-definable quantifiers

E.G. MOST is SO GQs but probably not SO-definable.
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GQS ARE NOT ENOUGH

THEOREM (KONTINEN 2002)

The extension L∗ of first-order logic by all Lindström quantifiers
cannot define the monadic second-order existential quantifier.

COROLLARY

Lindström quantifiers alone are not adequate for formalizing all
natural language quantification.

EXAMPLE

Some students gathered to play poker.
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FOR EXAMPLE . . .

DEFINITION

Denote by someEM :

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(Y 6= ∅ & P ∈ G)}.

(3.) Some students played poker together.
(3’.) someEM x ,X [Student(x),Play(X )].
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ANOTHER EXAMPLE . . .

DEFINITION

We take fiveEM to be the second-order quantifier denoting:

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(card(Y ) = 5 & P ∈ G)}.

(4.) Five people lifted the table.
(4’.) fiveEMx ,X [Student(x),Lift(X )].
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SO-DEFINABLE GQS ARE CLOSED ON LIFTS

THEOREM

Let Q be a Lindström quantifier definable in SO. Then the
collective quantifiers QEM , QN , and Qdfit are definable in SO.

PROOF.
Let us consider the case of QEM . Let ψ(x) and φ(Y ) be
formulas. We want to express QEMx ,Y (ψ(x), φ(Y )) in
second-order logic. By the assumption, the quantifier Q can be
defined by some sentence θ ∈ SO[{P1,P2}]. We can now use
the following formula:

∃Z (∀x(Z (x)→ ψ(x)) ∧ (θ(P1/ψ(x),P2/Z ) ∧ φ(Y/Z )).
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AND THIS IS THE CASE FOR ALL SO-DEFINABLE LIFTS

THEOREM

Let us assume that the lift (·)∗ and a Lindström quantifier Q are
both definable in second-order logic. Then the collective
quantifier Q∗ is also definable in second-order logic.
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COLLECTIVE MOST

(5.) Most groups of students played Hold’em together.
(5’.) MOST X ,Y [Students(X ),Play(Y )].

• The discussed lifts do not give the intended meaning.
• It is unlikely that any lift can do the job.
• Otherwise, highly unexpected things would happen!
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THE MAIN THEOREM

THEOREM

If the quantifier MOST is definable in second-order logic, then
counting hierarchy, CH is equal polynomial hierarchy, PH.
Moreover, CH collapses to its second level.

PROOF.
The logic FO(MOST) can define complete problems for each
level of the CH (Kontinen&Niemisto’06). If MOST would be
definable in SO, then FO(MOST) ≤ SO and therefore SO would
contain complete problems for each level of the CH. This would
imply that CH = PH and furthermore that CH ⊆ PH ⊆ C2P.
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WHAT IS THE RIGHT ONTOLOGY FOR SEMANTICS?

• L∗ and SO doesn’t capture natural language?
• Are many-sorted (algebraic) models more plausible?

• Type-shifting is too complex;
• In principle this question is psychologically testable.
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Σ1
1(RISTAD’S)-THESIS

Σ1
1-THESIS

Our everyday language is semantically bounded by the
properties expressible in the existential fragment of
second-order logic.



• Does SOGQ “MOST” belong to everyday language?
• Everyday language doesn’t realize prop. coll. qua.
• No need to extend the higher-order approach to prop. qua.

QUESTION

Have we just encountered an example where complexity
restricts the expressibility of everyday language as suggested
by Σ1

1-thesis?
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TO SUM UP

• We can approach collectivity in terms of SOGQs.
• The previous attempts have relied on SO-definable GQs...
• ...which is probably not general enough.
• Complexity considerations suggest algebraic approach.
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MORE DETAILS IN:

J. Kontinen and J. Szymanik
A Remark on Collective Quantification,
Journal of Logic, Language and Information , Volume 17,
Number 2, 2008, pp. 131–140.

J. Szymanik
Quantifiers in TIME and SPACE. Computational Complexity
of Generalized Quantifiers in Natural Language
ILLC Dissertation Series 2009.
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