
Alternative Representations.
A Case Study of Proportional Judgements

Jakub Szymanik Shane Steinert-Threlkeld Gert-Jan Munneke

Institute for Logic, Language and Computation
University of Amsterdam

LCQ’15



Outline

Introduction

Proof-of-concept
Semantic automata
Experiments
Discussion



General background

I Meaning = ‘collection of algorithms’
I Experimental testing by psycholinguists

I How are algorithms selected in a particular context?
I Inseparability of algorithms and the data structures
I Sensitivity of tasks in other domains to the manner of presentation
I Different presentations of the data create different mental

representations and thereby trigger different algorithms.
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Abstract

I Sensitivity of verification to a visual presentation.
I A computational model which made empirically verified predictions.
I Extending it to handle different representations.
I Predicting that they will effect working memory.
I Experiments and discussion.
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Model-theoretic view of quantifiers

U A B

S0
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How do we encode models?

U A B

S0

S1 S2S3c1

c2
c3

c4

c5

This model is uniquely described by the word 01.



Step by step

I Restriction to finite models of the form M = (U,A,B).

I List of all elements belonging to A: c2, c3.
I Write a 0 for each element of A \ B and a 1 for each element of A ∩ B.
I Q is represented by the set of words describing all elements of the class.
I That is, Q is a formal language.
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More Formally Defined

Definition
LetM = 〈M,A,B〉 be a model, ~a an enumeration of A, and n = |A|. We
define τ

(
~a,B

)
∈ {0, 1}n by

(
τ
(
~a,B

))
i =

{
0 ai ∈ A \ B
1 ai ∈ A ∩ B

Thus, τ defines the string corresponding to a particular finite model.

Definition
For a type 〈1, 1〉 quantifier Q, define the language of Q as

LQ =
{

s ∈ {0, 1}∗ | 〈#0(s),#1(s)〉 ∈ Qc}
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Examples of Quantifier Languages

I Levery = {w | #0 (w) = 0}
I Lsome = {w | #1 (w) > 0}
I Lmost = {w | #1 (w) > #0 (w)}



Aristotelian quantifiers

“all”, “some”, “no”, and “not all”

q0 q1

1

0

0,1

Finite automaton recognizing LAll



Cardinal quantifiers

E.g. “more than 2”, “less than 7”, and “between 8 and 11”

q0 q1 q2 q3

0 0 0 0,1

1 1 1

Finite automaton recognizing LMore than two



Proportional quantifiers

I E.g. “most”, “less than half”.
I Most As are B iff card(A ∩ B) > card(A− B).
I There is no finite automaton recognizing this language.
I We need internal memory.
I A push-down automata will do.

1, 0/ε

0, x/0x

1,#/#
1, x/1x

0, 1/ε
0,#/#

Figure : A PDA computing Lmost.



Does it say anything about processing?

Question
Do minimal automata predict differences in verification?



Neurobehavioral studies

Differences in brain activity.
I All quantifiers are associated with numerosity:

recruit right inferior parietal cortex.
I Only higher-order activate working-memory capacity:

recruit right dorsolateral prefrontal cortex.

McMillan et al., Neural basis for generalized quantifiers comprehension, Neuropsychologia, 2005

Szymanik, A Note on some neuroimaging study of natural language quantifiers comprehension, Neuropsychologia, 2007



Schizophrenic patients

Zajenkowski et al., A computational approach to quantifiers as an explanation for some language impairments in schizophrenia,

Journal of Communication Disorders, 2011.



What about input variations?



Model saliency

I We take models of the form 〈M,A,B,R〉 where R ⊆ M ×M.
I τ ′ maps such models into an alphabet containing pairs of symbols in

addition to 0s and 1s.
I τ ′ will map all pairs in R to pairs of symbols in the natural way,
I e.g., 〈a, b〉 ∈ R where a ∈ A ∩ B and b ∈ A \ B, then 〈a, b〉 will get

mapped to 〈1, 0〉.
I Any elements of the model that are not paired will get mapped to 0 or 1.
I L′most is the set of strings where the only pairs are 〈1, 0〉 or 〈0, 1〉 and all

individual symbols are 1s.
I This language, however, is paradigmatically regular.



So theoretically it should make a difference . . .
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Method

4 experiments:

1. Are more than half of the dots yellow?

2. Are most of the dots yellow?

3. Are most of the letters ‘O’?

4. Are more than half of the letters ‘E’?

Manipulations:
I random and paired
I 8/7, 9/8 and 10/9 proportions



Exp. 1, 2 Exp. 1, 2

Exp. 3 Exp. 4



Manipulating WM

I A digit recall task.
I A string of 5 digits for 1500ms.
I Probing one digit.
I Blocks with low memory condition: the same sequence of digits.
I Blocks with high memory condition: the digits were randomized.



Participants

I M’Turk with HIT approval rate of at least 99%.
I Exp. 1: N = 59, 28 male, age 20–59 (M = 33, SD = 9.9)
I Exp. 2: N = 57, 28 male, age 20–68 (M = 35,SD = 9.6)
I Exp. 3: N = 56, 18 male, age 19–75 (M = 40,SD = 14)
I Exp. 4: N = 54, 27 male, age 20–69 (M = 35,SD = 12)



Effects of the interaction of stimulus type and WM in the digit recall task
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Effects of stimulus type on verification RT and accuracy
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Summary

I WM involvement depends on the presentation of a visual scene
I Consideration of different representations lead to new predictions

I Why, however, do we only see the interaction effect in certain cases?
I a controlled lab setting
I approximating/counting≈most/more than half
I making a speed-accuracy tradeoff
I looking for mixed strategies
I understanding visual search

I Using WM to distinguish verification strategies
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Outlook

I Back-and-forth between logic and cognition
I Logic brings complexity classification
I Cognitive science representation/strategies
I We need put it together in a form of a cognitive model
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