Using the intrinsic complexity of turn-based games to predict participants' decision times

Jakub Szymanik

Institute for Logic, Language and Computation University of Amsterdam

joint work with Ben Meijering and Rineke Verbrugge

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Higher-order social cognition

<ロ> <個> < 国> < 国> < 国> < 国> < 国</p>

1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks'

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks'

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

2. Interacts with game-theory and logic

Higher-order social cognition

- 1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks'
- 2. Interacts with game-theory and logic
- Backward induction: tells us which sequence of actions will be chosen by agents that want to maximize their own payoffs, assuming common knowledge of rationality.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Higher-order social cognition

- 1. Higher-order reasonings: 'I believe that Ann knows that Ben thinks'
- 2. Interacts with game-theory and logic
- Backward induction: tells us which sequence of actions will be chosen by agents that want to maximize their own payoffs, assuming common knowledge of rationality.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

4. Turn-based games have been extensively studied in psychology

HIT-N Game

Games left O								
1 2	3	4	5 6	7	8 9 10	11	12 13 14 15	
	Your score 0			Opponent's score 0				

Gneezy et al. Experience and insight in the race game, 2010

Hawes et al. Experience and abstract reasoning in learning backward induction, 2012

Turn-based games

Turn-based games

Turn-based games

Hedden & Zhang What do you think I think you think?, 2002

Meijering et al., The facilitative effect of context on second-order social reasoning, 2010

Subjects don't use BI

Project

- 1. What is the complexity of the computational problem?
- 2. What makes certain trials harder than others?
- 3. What is the connection with logic?
- 4. What is the connection with game-theory?
- \hookrightarrow human reasoning strategies and bounded rationality

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Marble Drop Game

▲□▶▲□▶▲□▶▲□▶ □ のへで

Logical analysis: MDG decision trees

ヘロト 人間 とくほ とくほ とう

æ.

Logical analysis: MDG decision trees

Definition

G is generic, if for each player, distinct end nodes have different pay-offs.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Pay-off structure

Pay-off structure

Forward reasoning + backtracking is consistent with eye-tracking study.

イロト イポト イヨト イヨト

Forward Reasoning + Backtracking, FRB

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

For an average random game with 3 decision points, the forward reasoning plus backtracking algorithm needs fewer computation steps to yield a correct solution than backward induction.

Table : Cross-table of payoff structures and the necessary number of steps when using forward reasoning with backtracking on all 576 possible experimental pay-off structures.

# of steps	1	2	4	5	6	8
# of payoff structures	288	72	48	56	16	96

(ロ) (同) (三) (三) (三) (○) (○)

On average: BI=6 and FRB=3

Descriptive complexity: alternation type

Definition

Let's assume that the players strictly alternate in the game. Then:

- 1. In a Λ_1^i tree all the nodes are controlled by Player *i*.
- 2. In a Λ_k^i tree, *k*-alternations, starts with an *i*th Player node.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Descriptive complexity: alternation type

Definition

Let's assume that the players strictly alternate in the game. Then:

- 1. In a Λ_1^i tree all the nodes are controlled by Player *i*.
- 2. In a Λ_k^i tree, *k*-alternations, starts with an *i*th Player node.

Figure : Λ_3^1 -tree

Recall, ...

Figure : Two Λ_3^1 trees.

• • • • • • • • •

ъ

-

T^- -example

Figure : Λ_1^1 tree and Λ_3^1 tree

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Definition

If *T* is a generic game tree with the root node controlled by Player 1 (2) and *n* is the highest pay-off for Player 1 (2), then T^- is the minimal subtree of *T* containing the root node and the node with pay-off *n* for Player 1 (2).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conjecture

Observation If T_1 is accessible and T_2 is inaccessible then $T_1^- < T_2^-$.

Conjecture

Observation

If T_1 is accessible and T_2 is inaccessible then $T_1^- < T_2^-$.

Conjecture

Let us take two MDG trials T_1 and T_2 . T_1 is easier for participants than T_2 if and only if T_1^- is lower in the tree alternation hierarchy than T_2^- .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

FRB and structural complexity

Hypothesis

Let us take two MDG trials T_1 and T_2 . Forward reasoning plus backtracking yields a correct solution for T_1 faster than T_2 if and only if T_1^- is lower in the tree alternation hierarchy than T_2^- .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

FRB and structural complexity

Hypothesis

Let us take two MDG trials T_1 and T_2 . Forward reasoning plus backtracking yields a correct solution for T_1 faster than T_2 if and only if T_1^- is lower in the tree alternation hierarchy than T_2^- .

Table : Output of full-factorial linear mixed-effects model with factors Accessibility (A), Steps of forward reasoning with backtracking (FRB) applied to the subset of actually presented experimental games.

Parameter	Estimate	St. Error	t-value	p-value
a) Accessible	-0.689147	0.271256	-2.54	.000
b) FRB	0.008767	0.034930	0.25	.418
c) A:FRB	0.084336	0.037277	2.26	.000

- FRB steps are a good predictor of RT.
- RT decreases for 'accessible games'.
- No significant effect for 'inaccessible games'.
- RT increases with each additional FRB step in 'accessible games'.

Summary of the results

Structural properties responsible for the cognitive difficulty

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Results generalized to other turn-based games

Summary of the results

Structural properties responsible for the cognitive difficulty

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Results generalized to other turn-based games
- FRB avoids higher-order reasoning
- FRB is computationally optimal

Thank you

E-mail: jakub.szymanik@gmail.com

URL: http://www.jakubszymanik.com/

