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Abstract

We study semantic complexity of quanti�ers, and their distribution

in large-scale English and German corpora. The semantic complexity

of a quanti�er can be de�ned as the amount of computational resources

necessary to decide whether the quanti�er sentence is true in a �nite

situation or state of a�airs. As it is known that the cognitive abili-

ties (e.g., working memory) of speakers are limited, one would expect

speakers to be biased towards quanti�ers that are easy to compute

(e.g. can be computed involving little to no working memory). We

show that, as predicted by the theory, corpora distributions are sig-

ni�cantly skewed towards the quanti�ers of lower complexity. We also

show that such correlation can be described by a power law.

1 Introduction

Linguists and philosophers have been searching for various ways to estimate

complexity and expressivity of natural language. One important debate piv-

ots around the Equivalent Complexity Thesis (see Miestamo et al., 2008),

that is the question whether all languages of the world are equally com-

plex or can express equally complex concepts. It is not surprising that such



questions can sparkle lively discussion, after all, a proper answer would in-

volve integrating many aspects of linguistics, e.g., grammatical complexity,

cognitive di�culty, cultural diversity, etc. As Sampson et al. (2009) puts it:

Linguists and non-linguists alike agree in seeing human language

as the clearest mirror we have of the activities of the human

mind, and as a specially important of human culture, because it

underpins most of the other components. Thus, if there is serious

disagreement about whether language complexity is a universal

constant or an evolving variable, that is surely a question which

merits careful scrutiny. There cannot be many current topics of

academic debate which have greater general human importance

than this one.

These endeavors are usually driven by di�erent (but often related) ques-

tions: What are the semantic bounds of natural languages or, in other

words, what is the conceptual expressiveness of natural language (see, e.g.,

Mostowski and Szymanik, 2012)? What is the `natural class of concepts'

expressible in a given language and how to delimit it (see, e.g., Barwise and

Cooper, 1981)? Are there di�erences between various languages with respect

to semantic complexity (see, e.g., Everett, 2005)? Or more from a method-

ological perspective: how powerful must be our linguistic theories in order to

minimally describe semantic phenomena (see, e.g. Ristad, 1993)? A similar

question can also be asked from a cognitive angle: are some natural language

concepts harder to process for humans than others (see Section 2.3)?

In order to contribute to the above outlined debate we focus on one

aspect of natural language: its ability to express (often vague and relative)

quantities by using a wide repertoire of quanti�er expressions, like `most', `at

least �ve', or `all' (see, e.g., Keenan and Paperno, 2012). In the next sections

we will focus on the semantic complexity of number concepts. This measure

will deal with the meaning of the quanti�ers abstracting away from many

grammatical details as opposed to, for example, typological (cf. McWhorter,

2001) or information-theoretic approaches (cf. Juola, 1998) known from the

literature. Such idealized assumption (like many idealized assumptions in the

sciences, e.g., point-masses in Newtonian physics) is both necessary (in that

it simpli�es analysis of a complex world and makes it independent from par-

ticular linguistic theories) and convenient (as it results in characterizations

of phenomena that balance description simplicity with empirical adequacy).



In the last section we present linguistic experiments showing that semantic

complexity can be used to predict strikingly similar distributions of quanti-

�ers in both English and German textual data, i.e., in both corpora we �nd

power law distributions with respect to the semantic complexity and fre-

quency. Indeed, one of the linguistic reasons to expect power laws in natural

language data is the principle of least e�ort in communication: speakers tend

to minimize the communication e�ort by generating `simple' messages. We

take this result as a proof of concept, i.e., we claim that abstract semantic

complexity measures (as the one considered in this paper) may enrich the

methodological toolbox of the language complexity debate.

2 Semantic Complexity of Number Expressions

2.1 Quanti�ers

What are the numerical expressions (quanti�ers) we are going to talk about?

Intuitively, on the semantic level, quanti�ers are expressions that appear to

be descriptions of quantity, e.g., `all', `not quite all', `nearly all', `an awful

lot', `a lot', `a comfortable majority', `most', `many', `more than k', `less than

k', `quite a few', `quite a lot', `several', `not a lot', `not many', `only a few',

`few', `a few', `hardly any', `one', `two', `three', etc. To concisely capture

the semantics (meaning) of the quanti�ers we should consider them in the

sentential context, for instance:

(1) More than seven students are smart./Über 7 Studenten sind klug.

(2) Fewer than eight students received good marks./Unter ein Halb der

Studenten haben gute Bewertungen bekommen.

(3) More than half of the students danced nude on the table./Über ein

Halb der Studenten haben genäckt getanzt.

(4) Fewer than half of the students saw a ghost./Unter ein Halb der Stu-

denten haben einen Geist gesehen.

The formal semantics of natural language describes the meanings of these

sentences. Sentences (1)�(4) share roughly the same linguistic form Q A B,

where Q is a quanti�er (determiner), A is a predicate denoting the set of

students, and B is another predicate referring to various properties speci�ed

in the sentences. One way to capture the meanings of these sentences is



by specifying their truth-conditions, saying what the world must be like in

order to make sentences (1)�(4) true. To achieve this, one has to specify the

relation introduced by the quanti�er that must hold between predicates A

andB. This is one of the main tasks of generalized quanti�er theory (see, e.g.,

Peters and Westerståhl, 2006) � assigning uniform interpretations to the

quanti�er constructions across various sentences by treating the determiners

as relations between sets of objects satisfying the predicates. We say that the

sentence `More than seven A are B' is true if and only if there are more than

seven elements belonging to the intersection of A and B (card(A ∩B) > 7).

Analogously, the statement `Fewer than eight A are B' is true if and only

if card(A ∩ B) < 8. In the same way, the proposition `More than half

of the A are B' is true if and only if the number of elements satisfying

both A and B is greater than the number of elements satisfying only A (i.e.

card(A∩B) > card(A−B)) and then we can also formalize the meaning of

sentence `Fewer than half of the A are B' as card(A ∩B) < card(A−B).1

We are interested in the following: given a class of quanti�ers (numerical

concepts) realized in natural language can we categorize them with respect

to their semantic complexity in an empirically plausible way?

2.2 Semantic Complexity

The idea, proposed by van Benthem (1986), is to characterize the minimal

computational devices that recognize di�erent quanti�ers in terms of the

well-known Chomsky hierarchy. By recognition we mean deciding whether a

simple quanti�er sentence of the form Q A B is true in a situation (model)

M . Let us explain what we mean with the model below:

Imagine that you have a picture presenting colorful dots and consider the

following sentence2:

(5) Every dot is red./Alle die Punkte sind rot.

1Obviously, in many of these cases our truth-conditions capture only fragments of

the quanti�er meaning, or maybe we should better say, approximate typical meaning in

natural language. For instance, we interpret `most' and `more than half' as semantically

equivalent expression although there are clear di�erences in the linguistic usage. The

point here is two-fold, on the one hand the same idea of generalized quanti�ers can be

used to capture various subtleties in the meaning, and even more importantly, from our

perspective, majority of such extra-linguistic aspects, like pragmatic meaning, would not

make a di�erence for the semantic complexity.
2As we will be considering English and German data, we provide examples in both

languages.



If you want to verify that sentence against the picture it su�ces to check the

color of all dots at the picture one by one. If we �nd a non-red one, then we

know that the statement is false. Otherwise, if we analyze the whole picture

without �nding any non-red element, then the statement is true. We can

easily compute the task using the following �nite automaton from Figure 1,

which simply checks whether all elements are red.

q0 q1

red

non-red

red, non-red

Figure 1: Finite automaton for the veri�cation of sentence (5). It inspects

the picture dot by dot starting in the accepting state (double circled), qo.

As long as it does not �nd a non-red dot it stays in the accepting state. If it

�nds such a dot, then it already `knows' that the sentence is false and moves

to the rejecting state, q1, where it stays no matter what dots come next.

Obviously, as a processing model the automaton could terminate instantly

after entering the state q0, however, we leave the loop on q1 following the

convention of completely de�ning the transition function.

In a very similar way, we can compute numerical quanti�ers in the fol-

lowing sentences:

(6) More than three dots are red./Über 3 Punkte sind rot.

(7) Fewer than four dots are red./Unter 4 Punkte sind rot.

If we want to verify the sentences against a picture, all we have to do is

check the color of all the dots in the picture, one by one. If we �nd four red

dots, then we know that statement (6) is true. Otherwise, if we analyzed

the whole picture without �nding four red elements, then statement (7) is

true. We can easily compute the task using the following �nite automata

from Figures 2 and 3.3

3Formally speaking, the automata as input take strings encoding the �nite situations

(models). They are to decide whether a given quanti�er sentence, Q(A,B), is true in the

model. We restrict ourselves to �nite models of the form M = (M,A,B). For instance, let

us consider the model M, where M = {c1, c2, c3, c4, c5}, A = {c2, c3}, and B = {c3, c4, c5}.
As we are only interested in A elements we list c2, c3. Then we replace c2 with 0 because

it belongs to A but not B, and c3 with 1 because it belongs to A and B. As a result,



q0 q1 q2 q3 q4

non-red non-red non-red non-red red, non-red

red red red red

Figure 2: This �nite automaton decides whether more than three dots are

red. The automaton needs �ve states. It starts in the rejecting state, q0, and

eventually, if the condition is satis�ed, moves to the double-circled accepting

state, q4. Furthermore, notice that to recognize `more than seven', we would

need an analogous device with nine states.

q0 q1 q2 q3 q4

non-red non-red non-red non-red red, non-red

red red red red

Figure 3: This �nite automaton recognizes whether fewer than four dots are

red. The automaton needs �ve states. It starts in the accepting state, q0,

and eventually, if the condition is not satis�ed, moves to the rejecting state,

q4. Furthermore, notice that to recognize `fewer than eight', we would need

an analogous device with nine states.

These �nite automata are very simple and they have only very limited

computational power. Indeed, they cannot recognize proportional quanti-

�ers, which compare the cardinalities of two sets (van Benthem, 1986) as in

the following sentences:

in our example, we get the word 10 that uniquely describes the model with respect to

all the information needed for the quanti�er veri�cation in natural language. Now, we

can feed this code into a �nite automata corresponding to quanti�ers. For instance, the

automaton for `Some A are B' will start in a rejecting state and stay there after reading

0. Next, it will read 1 and move to the accepting state. The PDA for the quanti�er

most, on the other hand, will compare the number of 0s and 1s and in this case end up in

the rejecting state. Our encoding works under the implicit assumption that all quanti�ers

satisfy isomorphism, conservativity and extentionality that are strongly hypothesized to be

among quanti�er semantic universale (Barwise and Cooper, 1981; Peters and Westerståhl,

2006). For quanti�ers do not satisfying these properties we would need to take into account

all elements belonging to the model (see Mostowski, 1998).



(8) More than half of the dots are red./Über ein Halb der Punkte sind rot.

(9) Fewer than half of the dots are red./Unter ein Halb der Punkte sind

rot.

As the pictures may contain any �nite number of dots, it is impossible to

verify those sentences using only a �xed �nite number of states, as we are

not able to predict beforehand how many states are needed. To develop

a computational device for this problem, an unbounded internal memory,

which allows the automaton to compare two cardinalities, is needed. The

device we can use is a push down automaton that `counts' a number of

red and non-red dots, stores them in its stack, and compares the relevant

cardinalities (numbers) (see e.g. van Benthem, 1986).

Push-down automata cannot only read the input and move to the next

state, they also have access to the stack memory and depending on the top

element of the stack they decide what to do next. Graphically, we represent

this by the following labeling of each transition: x, y/w, where x is the

current input the machine reads (i.e. the element under consideration), y is

the top element of the stack, and w is the element which will be put on the

top of the stack next (Hopcroft et al., 2000). For instance, the push-down

automaton from Fig. 4 computes sentence `Fewer than half of the dots are

red'. Furthermore, notice that to recognize `more than half', we would need

an almost identical device, the only di�erence being the reversed accepting

condition: accept only if there is a red dot left on the top of the stack.

The above described model characterizes quanti�er meaning into two

classes: regular quanti�ers (recognizable by �nite automata) and context-free

quanti�ers (recognizable by push-down automata), see Table 1. In section 4

we show experimentally that this distinction correlates with linguistic data.

But before we move to our experimental data let us brie�y mention experi-

mental cognitive evidence corroborating the signi�cance of this distinction.

2.3 Quanti�er Processing4

The above model of semantic complexity was suggested by Szymanik (2007)

as a psychological model for some sentence-picture veri�cation experiments

in which subjects were asked to give precise judgments. It has been shown

4While reading this Section one may think about similar literature in Arti�cial Gram-

mar Learning trying to assess the role of grammatical complexity in language inference

(see, e.g., Schi� and Katan, 2014)



q0 q1

red, #/red

non-red, #/non-red

red, non-red/ε

non-red, red/ε

red, red/ red red

non-red, non-red/non-red non-red

ε, red/red

ε, #/#

ε, non-red/ε

Figure 4: This push-down automaton recognizes whether fewer than half of

dots are red. The automaton needs two states and the stack. It starts in the

accepting state, q0 with an empty stack marked by #. If it �nds a red dot

it pushes it on top of the stack and stays in q0, if it �nds a non-red dot it

also pushes it on top of the stack. If it �nds a red (non-red) dot and there is

already non-red (red) dot on the top of the stack, the automaton pops out

the top of the stack (by turning it into the empty string ε), i.e., it `cancels'

dot pairs of di�erent colors. If it sees a red (non-red) dot and there already

is a dot of the same color on the stack, then the automaton pushes another

dot of that color on the top of the stack. Eventually, when the automaton

has analyzed all the dots (input=ε) then it looks on the top of the stack. If

there is a non-red dot it moves to the accepting state, otherwise it stays in

the rejecting state.

that the computational distinction between quanti�ers recognized by �nite-

automata and push-down automata is psychologically relevant, i.e., the more

complex the automaton, the longer the reaction time and working memory

involvement of subjects asked to solve the veri�cation task: Szymanik and

Zajenkowski (2010a) have shown that sentences with the Aristotelian quan-

ti�ers `some' and `every', corresponding to two-state �nite automata, were

solved in the least amount of time, while the proportional quanti�ers `more

than half' and `less than half' triggered the longest reaction times. When it

comes to the numerical quanti�ers `more than k' and `fewer than k', corre-



Table 1: Quanti�ers and their semantic complexity. Note: we assume `few'

to be the dual of `most', see also footnote 1.

class examples quanti�er complexity

Aristotelian `every', `some', all, some 2-state acyclic FA

counting `more than k', `exactly 5' >k, <k, k k+2-state FA

proportional `most', `less than half' <p/k, p/k, PDA

`10%', `two-thirds' >k/100, few

`less than 3/5' <k/100, k/100

most, >p/k,

sponding to �nite automata with k + 2 states, the corresponding latencies

were positively correlated with the number k. Szymanik and Zajenkowski

(2010b, 2011) have explored this complexity hierarchy in concurrent veri�ca-

tion experiments, and have shown that during the veri�cation, the subjects'

working memory is qualitatively more engaged while verifying proportional

quanti�ers than while verifying numerical and Aristotelian quanti�ers. Ac-

tually, McMillan et al. (2005), in an fMRI study, have shown that during

veri�cation, all sentences activate the right inferior parietal cortex associated

with numerosity, but proportional quanti�ers activate also the prefrontal cor-

tex, which is associated with executive resources, such as working memory.

These �ndings were later strengthened by the evidence on quanti�er com-

prehension in patients with focal neurodegenerative disease (McMillan et al.,

2006). Moreover, recently Zajenkowski et al. (2011) have compared the ver-

i�cation of natural language quanti�er sentences in a group of patients with

schizophrenia and a healthy control group. In both groups, the di�culty

of the quanti�ers was consistent with the computational predictions, even

if patients with schizophrenia took more time to solve the problems. How-

ever, they were signi�cantly less accurate only with proportional quanti�ers,

such as `more than half'. Finally, Zajenkowski and Szymanik (2013) have

explored the relationship between intelligence, working memory, executive

functions and complexity of quanti�ers to �nd out that the automata model



nicely predicts the correlations between those various measures of cognitive

load. All this evidence speaks in favor of the thesis that the model can

capture some cognitive aspect of the semantics for generalized quanti�ers.

However, these studies have exclusively focused on the complexity of veri�-

cation procedures for various quanti�er sentences, hence, the question arises

as to whether the distinction between regular and context-free quanti�ers is

also re�ected in very large English and German corpora, large enough to be

considered representative for either language. In the next sections we show

that this appears to be the case.

3 Power Laws

We believe that semantic complexity has an observable impact on quanti-

�er use by speakers, which can be harnessed and quanti�ed using Zipfean

relations or power laws. Power laws in natural language data were �rst dis-

covered by the American linguist and statistician George K. Zipf in the early

20th century. Power laws are non-normal skewed distributions where, intu-

itively, the topmost 20% outcomes of an ordinal variable concentrate around

80% of the probability mass or frequency. They are widespread in natural

language data (cf. Baroni, 2009).

Zipf further hypothesized that power laws and, in general, biased dis-

tributions arise in natural language data due to the so-called principle of

least e�ort in human communication: Speakers seek to minimize their e�ort

to generate a message by using few, short, ambiguous words and short sen-

tences. While hearers seek to minimize their e�ort to understand a message

by requiring the opposite. This typically gives rise to textual datasets or

corpora in which, while encompassing large vocabularies, a small subset of

words is used very frequently.

More recent work (cf. Newman, 2005) has shown that Zipf's original

equations can be modi�ed to cover a larger spectrum of natural language

phenomena, suggesting that Zipf's principle may apply not only to surface

features such as length or vocabulary size, but also to deep features such as

computational complexity. In what follows we will endeavor to show that

low complexity quanti�ers occur more likely than high complexity quanti-

�ers. Furthermore, that the following power law or Zipfean relation between

quanti�er frequency fr(Q) and quanti�er rank rk(Q) described by the equa-



Table 2: Corpora used in this study.
corpus sentences tokens

Sdewac (Ger) ∼ 45 million ∼ 800 million

WaCkY (Eng) ∼ 43 million ∼ 800 million

tion

fr(Q) = a/rk(Q)b (PL)

can be observed in very large corpora. For the purposes of this paper we

assume rk(Q) to be an ordered factor (see Table 1), with quanti�ers ordered

by their semantic complexity and expressiveness, whereas fr(Q) refers to

their raw frequency (absolute counts).

Power laws are inferred by estimating (statistically) their coe�cients or

parameters. Many techniques are possible to estimate their parameters. To

approximate the parameters a and b in (PL) we relied in our experiments on

the standard least squares linear regression technique (see (Newman, 2005)).

This is because power laws are equivalent to linear models on the log-log

scale:
fr(Q) = a/rk(Q)b

i�

log(fr(Q)) = a− b · log(rk(Q)).

4 Experiment

In this section we outline our analysis of generalized quanti�er frequency

in corpora. We approximated our quanti�ers' distribution by identifying

their surface forms in two large corpora built from the English and German

Wikipedias. In addition, we checked if such distribution, as discussed in

Section 3 is skewed towards �nite-automata quanti�ers and can be described

by a power law. Given that negation in general has no impact in semantic

complexity (as understood in our paper), we disregarded negative quanti�ers

and all (natural language) polarity issues. Furthermore, rather than covering

all the linguistic aspects of the quanti�ers studied �a considerable challenge

that goes beyond the scope of this paper�, we focused on their main surface

forms and lexical variants.



4.1 Corpora

To obtain a representative sample, we considered two very large English and

German corpora covering multiple domains and sentence types (declarative

and interrogative). Speci�cally, we considered two corpora, built and cu-

rated by Baroni et al. (2009), the WaCkY (English) and Stuttgart Sdewack

(German) corpora. Both corpora were built by postprocessing full dumps

(from 2010) of Wikipedia. The authors removed all HTML markup and im-

age �les, and �ltered out those webpages devoid of real textual content (e.g.,

tables displaying statistics), until balanced (relatively to subject matter or

domain, vocabulary, sentence type and structure, etc.) corpora representa-

tive of English and Germen were achieved. See Table 2 for details on their

size; for full details, please refer to Baroni et al. (2009).

The WaCkY corpus was segmented, tokenized and linguistically anno-

tated using the TreeTagger statistical parser5, that has an accuracy of over

90% for both languages, resulting in datasets that exhibit the format shown

in Figure 5. For each sentence, the corpora provide the following information:

(i) the list of its tokens (�rst column), (ii) the list of their corresponding

lemmas or morphological stems (second column), (iii) the list of their cor-

responding part-of-speech (POS) tags (third column). The WaCkY corpus

provides in addition: (iv) information regarding the position of the words in

the sentence (fourth and �fth columns), and (v) the list of their correspond-

ing typed (syntactic) dependencies (�th column). For our experiments, we

took into consideration only (i)�(iii), shared by both corpora. The POS

tags used by TreeTagger (for both English and German) are derived from

the well-known Penn Treebank list of POS tags.6

4.2 Patterns

We identify generalized quanti�ers indirectly, via part-of-speech (POS) pat-

terns (regular expressions) that approximate their surface forms. Each such

pattern de�nes a quanti�er type, modulo lexical variants. In what follows,

we counted the number of times each type is instantiated within a sentence

in the corpus, that is, its number of tokens.

Notice that to properly identify surface forms, POS tags are necessary,

5http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
6http://www.ling.upenn.edu/courses/Fall_2007/ling001/penn_treebank_pos.

html.



<s>

Flender Flender NP 1 3 VMOD

Werke Werke NP 2 3 SBJ

was be VBD 3 0 ROOT

a a DT 4 7 NMOD

German German JJ 5 7 NMOD

shipbuilding shipbuilding NN 6 7 NMOD

company company NN 7 3 PRD

, , , 8 7 P

located locate VVN 9 7 NMOD

in in IN 10 9 ADV

Lübeck Lübeck NP 11 10 PMOD

. . SENT 12 0 ROOT

</s>

Figure 5: Sample tokenized, POS-annotated sentence from the WaCkY cor-

pus.

given the peculiarities of our datasets. For instance, the Aristotelian quan-

ti�er (type) all is usually expressed in the Baroni corpora by the determiner

(DT) `every', but sometimes by the determiner `the' followed by a plural

noun (NNS) as in `the men' (as short for `all the men') Furthermore, no-

tice that lexical variants are key to identifying quanti�ers, since, in general,

many di�erent surface forms may be used to denote them. Thus, some is not

only expressed or denoted by the POS-annotated surface form `some/DT',

but also by pronouns such as `somebody', viz., by surface forms such as

`somebody/PN'.

Table 3 provides an overview of the patterns considered for the experi-

ment described in this paper. Every cluster of patterns gave rise to regular

expressions that were run over the corpora. Their rationale was to capture

quanti�er lexical variants In what follows we give two examples of what we

mean by lexical variants:

(1) To identify the Aristotelian quanti�er `all' in English, we considered

its lexical variants `all', `everybody', `everything', `every', `each', `ev-

eryone' and `the N', where N stands for a plural noun.

(2) To identify the Aristotelian quanti�er �all" in German, we considered



its lexical variants `einige', `jemand', `etwas', `irgendetwas', `ein', `es

gibt', `manche' and `viel'.

Notice that we lowercased all the input sentences and words and focused on

lemmas whenever possible to avoid unnecessarily multiplying patterns due

to in�ection (particularly in German).

4.3 Model Validation

To validate our models, we computed the R2 coe�cient, that measures how

well a set of observations �ts an inferred power law equation, and ranges

from 0 (no �t) to 1 (perfect �t). If the coe�cient is higher than 0.9, then

we can say with high con�dence that a distribution follows a power law (cf.

Newman, 2005).

Secondly, we tested if the distributions observerd (and their bias) were

random phenomenona or described some real pattern inherent to our datasets.

To this end we run a χ2 test (at p = 0.01 signi�cance) w.r.t. the uniform

distribution as our null hypothesis (cf. Gries, 2010).

Finally, we measured the skewness of the distribution (cf. Gries, 2010).

Skewness is a statistical measure that quanti�es how much the distribution

is symmetrical (which would be the case if it were Gaussian). A positive

value indicates a bias in (probability) density towards the y-axis, viz., the

�rst/highest ranked p outcomes of the (random) ordinal variable V whose

distribution we are analyzing. A negative value, the converse bias. The

higher the value, the higher the bias. Finally, a value close to 0 indicates a

normal distribution.

4.4 Results and Interpretation

The distributions observed are summarized by Figures 6 and 7. The reader

will �nd on the left of Figure 7 the relative average and cumulative frequency

plots for the quanti�ers considered, and to the right the plots of the log-log

regressions. They also provide the contingency tables from which the plots

were generated, and the results of the statistical tests. Finally, observe that

Figure 7, top right, spells out the power law/Zipfean relations inferred in

addition to the model validation results.

As expected by the theory and our assumptions, Aristotelian quanti�ers

are more frequent than counting quanti�ers, and counting quanti�ers than

proportional quanti�ers. Moreover, the trend appears to be cross-linguistic
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Figure 6: Left: Quanti�er distribution by quanti�er class. Right: Raw

frequencies per corpus.

(since shared by both corpora). Figure 6, right, shows that this bias is

statistically strongly signi�cant: their distribution signi�cantly di�ers from

uniform or random distributions (the null hypothesis rejected by the test),

since p < 0.01. Their distribution shows also a high measure of skewness.

Furthermore, we can infer power laws wherein Aristotelian quanti�ers

represent > 80% of the (mean) frequency mass. See Figure 7. Indeed, a high

goodness-of-�t coe�cient was obtained: R2 = 0.94. The distribution is again

statistically signi�cant and exhibits an even greater measure of skewness.

5 Conclusions

Our results, together with Thorne (2012), show that abstract computational

complexity measures allow quantifying the complexity of natural language

and suggest that their distribution in large textual datasets follows a power

law or Zip�an relation relatively to their semantic (data) complexity. The

usefulness of computational approaches to assess the intricate complexity of

linguistic expressions gathers additional support from experimental studies

in psycholinguistics.

The results also contribute to the discussion of semantic universals for

natural language quanti�ers (see Barwise and Cooper, 1981; Peters andWest-
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erståhl, 2006). It seems that the answer to the question of which logically

possible quanti�ers are realized (and how often) in natural language depends

not only on some formal properties of quanti�ers but also on the computa-

tional complexity of underlying semantic concepts. Simply speaking, some

quanti�ers may not be realized in natural language (or be used very rarely)

due to their semantic complexity.7

As we mentioned in the introduction our goal was to give a proof of con-

cept as for the applicability of abstract computational complexity measures

in quantifying semantic complexity. As the next step we would like to use

semantic complexity in the discussion of the equivalent complexity thesis: all

natural languages are equally complex (have equal descriptive power) (see,

e.g., Miestamo et al., 2008). The debate whether language complexity is a

universal constant surely has great general importance and demands careful

methodological scrutiny. The notion of semantic complexity explored here

(or some of its variants) could be used to enrich the methodological toolbox

used in this debate. For instance, as a �rst step, we could compare some

Western languages with some Creole languages with respect to our com-

plexity distinctions, i.e., check whether all languages realize equally complex

(e.g., context-free) semantic constructions, like proportional quanti�ers, and

whether they have similar distributions (realize equally complex expressions

equally often). In that way we could contribute to the debate whether creole

languages are simpler than other languages.
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