
Introduction to Generalized Quantifier Theory

Jakub Szymanik

Institute for Logic, Language and Computation
University of Amsterdam

EGG 2013



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Quantifiers are useful

Everyone knows everyone here.

Henk

R
ei

nh
ar

d

Ti
ki

tu An
to

n

Michael

Jonathan

Juha

Eleonora

N
inaSam

a

Peter

Jakub



Literature

I Westerståhl, Generalized Quantifiers, SEP.
I Peters & Westerståhl, Quantifiers in Language and Logic, OUP, 2008.
I Handbook of Logic and Language, 2nd edition, Van Benthem & Ter Meulen (Eds.), Elsevier

2011.
I http://jakubszymanik.com/EGG2013/

I http://www.jakubszymanik.com/

http://jakubszymanik.com/EGG2013/
http://www.jakubszymanik.com/


Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



1. All poets have low self-esteem.

2. Some dean danced nude on the table.

3. At least 3 grad students prepared presentations.

4. An even number of the students saw a ghost.

5. Most of the students think they are smart.

6. Less than half of the students received good marks.

7. Many of the soldiers have not eaten for several days.

8. A few of the conservatives complained about taxes.



Determiners

Definition
Expressions that appear to be descriptions of quantity.

Example
All, not quite all, nearly all, an awful lot, a lot, a comfortable majority, most,
many, more than n, less than n, quite a few, quite a lot, several, not a lot, not
many, only a few, few, a few, hardly any, one, two, three.



Quantifiers are second-order relations

Observation
If we fix a model M = (M,AM ,BM ), then we can treat a generalized quantifier
as a relation between relations over the universe.

Example

every[A,B] = 1 iff AM ⊆ BM

even[A,B] = 1 iff card(AM ∩ BM ) is even

most[A,B] = 1 iff card(AM ∩ BM ) > card(AM − BM )



Quantifiers are second-order relations

Observation
If we fix a model M = (M,AM ,BM ), then we can treat a generalized quantifier
as a relation between relations over the universe.

Example

every[A,B] = 1 iff AM ⊆ BM

even[A,B] = 1 iff card(AM ∩ BM ) is even

most[A,B] = 1 iff card(AM ∩ BM ) > card(AM − BM )



Quantifiers are second-order relations

Observation
If we fix a model M = (M,AM ,BM ), then we can treat a generalized quantifier
as a relation between relations over the universe.

Example

every[A,B] = 1 iff AM ⊆ BM

even[A,B] = 1 iff card(AM ∩ BM ) is even

most[A,B] = 1 iff card(AM ∩ BM ) > card(AM − BM )



Illustration

U A B

S0

S1 S2S3c1

c2
c3

c4

c5



Generalized Quantifiers

Definition
A quantifier Q is a way of associating with each set M a function from pairs of
subsets of M into {0, 1} (False, True).

Example

everyM [A,B] = 1 iff A ⊆ B

evenM [A,B] = 1 iff card(A ∩ B) is even

mostM [A,B] = 1 iff card(A ∩ B) > card(A− B)



Generalized Quantifiers

Definition
A quantifier Q is a way of associating with each set M a function from pairs of
subsets of M into {0, 1} (False, True).

Example

everyM [A,B] = 1 iff A ⊆ B

evenM [A,B] = 1 iff card(A ∩ B) is even

mostM [A,B] = 1 iff card(A ∩ B) > card(A− B)



Generalized Quantifiers

Definition
A quantifier Q is a way of associating with each set M a function from pairs of
subsets of M into {0, 1} (False, True).

Example

everyM [A,B] = 1 iff A ⊆ B

evenM [A,B] = 1 iff card(A ∩ B) is even

mostM [A,B] = 1 iff card(A ∩ B) > card(A− B)



Space of GQs

I If card(M) = n, then there are 222n
GQs.

I For n = 2 it gives 65,536 possibilities.

Question
Which of those correspond to simple determiners?



Space of GQs

I If card(M) = n, then there are 222n
GQs.

I For n = 2 it gives 65,536 possibilities.

Question
Which of those correspond to simple determiners?



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Isomorphism closure
(ISOM) If (M,A,B) ∼= (M′,A′,B′), then QM(A,B)⇔ QM′ (A′,B′)

Topic neutrality



Extensionality
(EXT) If M ⊆ M′, then QM(A,B)⇔ QM′ (A,B)

Universe independence



Conservativity
(CONS) QM(A,B)⇔ QM(A,A ∩ B)

A− B A ∩ B m



Research questions

I Do all NL determiners satisfy ISOM, EXT and CONS?
I Only?
I If yes, why?

1. Learnability?
2. Evolution?

Hunter & Lidz, Conservativity and learnability of determiners, Journal of Semantics, 2010



Kids...

1. There are blue non-circles . . . Are all the circle blue?

2. There are elephants not being ridden by a girl . . .
Is every girl riding an elephant?



Gleeb and gleeb’

gleebM [A,B] = 1 iff A 6⊆ B

gleebM [A,B] = 1 iff B 6⊆ A



Experiment

I Picky puppet task
I The puppet told me that he likes this card because gleeb girls are on the

beach.
I The puppet told me that he doesn’t like this card because it’s not true

that gleeb girls are on the beach.



Number triangle representation

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

... ...



Number triangle representation

-

- +

- + +

- + + +

- + + + +

... ...



General definition

Definition
A monadic generalized quantifier of type (1,1) is a class Q of structures of the
form M = (U,A1,A2), where A1,A2 ⊆ U. Additionally, Q is closed under
isomorphism.



Examples

every = {(M,A,B) | A,B ⊆ M and A ⊆ B}.

some = {(M,A,B) | A,B ⊆ M and A ∩ B 6= ∅}.

more than k = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > k}.

even = {(M,A,B) | A,B ⊆ M and card(A ∩ B) is even}.

most = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > card(A− B)}



Examples

every = {(M,A,B) | A,B ⊆ M and A ⊆ B}.

some = {(M,A,B) | A,B ⊆ M and A ∩ B 6= ∅}.

more than k = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > k}.

even = {(M,A,B) | A,B ⊆ M and card(A ∩ B) is even}.

most = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > card(A− B)}



Examples

every = {(M,A,B) | A,B ⊆ M and A ⊆ B}.

some = {(M,A,B) | A,B ⊆ M and A ∩ B 6= ∅}.

more than k = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > k}.

even = {(M,A,B) | A,B ⊆ M and card(A ∩ B) is even}.

most = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > card(A− B)}



Examples

every = {(M,A,B) | A,B ⊆ M and A ⊆ B}.

some = {(M,A,B) | A,B ⊆ M and A ∩ B 6= ∅}.

more than k = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > k}.

even = {(M,A,B) | A,B ⊆ M and card(A ∩ B) is even}.

most = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > card(A− B)}



Examples

every = {(M,A,B) | A,B ⊆ M and A ⊆ B}.

some = {(M,A,B) | A,B ⊆ M and A ∩ B 6= ∅}.

more than k = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > k}.

even = {(M,A,B) | A,B ⊆ M and card(A ∩ B) is even}.

most = {(M,A,B) | A,B ⊆ M and card(A ∩ B) > card(A− B)}



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Monotonicity

↑MON QM [A,B] and A ⊆ A′ ⊆ M then QM [A′,B].

↓MON QM [A,B] and A′ ⊆ A ⊆ M then QM [A′,B].

MON↑ QM [A,B] and B ⊆ B′ ⊆ M then QM [A,B′].

MON↓ QM [A,B] and B′ ⊆ B ⊆ M then QM [A,B′].



Inference test

1. Some boy is dirty.

2. Some child is dirty.

1. All child is dirty.

2. All boy is dirty.

1. All boy is muddy.

2. All boy is dirty.

1. No boy is dirty.

2. No boy is muddy.

1. Exactly five children are dirty.

2. Exactly five boys are dirty.



Boolean combinations

1. At least 5 or at most 10 departments can win EU grants. (disjunction)

2. Between 100 and 200 students started in the marathon. (conjunction)

3. Not all students passed. (outer negation)

4. All students did not pass. (inner negation)

Definition

(Q ∧ Q′)M [A,B] ⇐⇒ QM [A,B] and Q′M [A,B] (conjunction)

(Q ∨ Q′)M [A,B] ⇐⇒ QM [A,B] or Q′M [A,B] (disjunction).
(¬Q)M [A,B] ⇐⇒ not QM [A,B] (complement)

(Q¬)M [A,B] ⇐⇒ QM [A,M − B] (post-complement)



Monotonicity interacts with negation

Theorem
Q is MON↑

1. iff ¬Q is MON↓.
2. iff Q¬ is MON↓.

Q is ↑MON

1. iff ¬Q is ↓MON.

2. iff Q¬ is ↑MON.

Similarly for the downward monotone case.



Square of opposition

I some, ¬ some = no, some¬ = not all, ¬ some¬ = all .
I some is ↑MON↑.
I Therefore, no is ↓MON↓, not all is ↑MON↓, and all is ↓MON↑.



↑MON

-

- +

- + +

- + + +

- + + + +

... ...



↑MON

-

- +

- + +

- + + +

- + + + +

... ...



↑MON

-

- +

- + +

- + + +

- + + + +

... ...



It even helps to find an efficient solution for:

Gierasimczuk & Szymanik, Invariance properties of quantifiers and multiagent information exchange, Proc. of 12th Meeting on

Mathematics of Language



It even helps to find an efficient solution for:

Gierasimczuk & Szymanik, Invariance properties of quantifiers and multiagent information exchange, Proc. of 12th Meeting on

Mathematics of Language



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Definability

Definition
Let Q be a generalized quantifier and L a logic. We say that the quantifier Q
is definable in L if there is a sentence ϕ ∈ L such that for any M:

M |= ϕ iff QM [A,B].



Elementary GQs

Some GQs, like ∃≤3, ∃=3, and ∃≥3, are expressible in FO.

Example

some x [A(x),B(x)] ⇐⇒ ∃x [A(x) ∧ B(x)].



Non-elementary GQs

Theorem
The quantifiers ‘there exists (in)finitely many’, most and even are not
first-order definable.

We can use higher-order logics:

Example
In M = (M,AM ,BM ) the sentence

most x [A(x),B(x)]

is true if and only if the following condition holds:

∃f : (AM − BM ) −→ (AM ∩ BM ) such that f is injective but not surjective.



Non-elementary GQs

Theorem
The quantifiers ‘there exists (in)finitely many’, most and even are not
first-order definable.

We can use higher-order logics:

Example
In M = (M,AM ,BM ) the sentence

most x [A(x),B(x)]

is true if and only if the following condition holds:

∃f : (AM − BM ) −→ (AM ∩ BM ) such that f is injective but not surjective.



Non-elementary GQs

Theorem
The quantifiers ‘there exists (in)finitely many’, most and even are not
first-order definable.

We can use higher-order logics:

Example
In M = (M,AM ,BM ) the sentence

most x [A(x),B(x)]

is true if and only if the following condition holds:

∃f : (AM − BM ) −→ (AM ∩ BM ) such that f is injective but not surjective.



Theorem (Westerståhl 1998)
In finite models, persistent quantifiers satisfying EXT, ISOM and CONS are
FO-definable.



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Languages - basic definitions

I Alphabet is any non-empty finite set of symbols, e.g., A = {a, b} and
B = {0, 1}.

I A word (string) is a finite sequence of symbols from a given alphabet,
e.g., “1110001110”.

I The empty word, ε, is a sequence without symbols.
I The length of a word is the number of symbols in it.
I The set of all words over alphabet Γ is denoted by Γ∗, e.g.,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

I Any set of words, a subset of Γ∗, will be called a language.



Languages - basic definitions

I Alphabet is any non-empty finite set of symbols, e.g., A = {a, b} and
B = {0, 1}.

I A word (string) is a finite sequence of symbols from a given alphabet,
e.g., “1110001110”.

I The empty word, ε, is a sequence without symbols.
I The length of a word is the number of symbols in it.
I The set of all words over alphabet Γ is denoted by Γ∗, e.g.,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

I Any set of words, a subset of Γ∗, will be called a language.



Languages - basic definitions

I Alphabet is any non-empty finite set of symbols, e.g., A = {a, b} and
B = {0, 1}.

I A word (string) is a finite sequence of symbols from a given alphabet,
e.g., “1110001110”.

I The empty word, ε, is a sequence without symbols.

I The length of a word is the number of symbols in it.
I The set of all words over alphabet Γ is denoted by Γ∗, e.g.,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

I Any set of words, a subset of Γ∗, will be called a language.



Languages - basic definitions

I Alphabet is any non-empty finite set of symbols, e.g., A = {a, b} and
B = {0, 1}.

I A word (string) is a finite sequence of symbols from a given alphabet,
e.g., “1110001110”.

I The empty word, ε, is a sequence without symbols.
I The length of a word is the number of symbols in it.

I The set of all words over alphabet Γ is denoted by Γ∗, e.g.,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

I Any set of words, a subset of Γ∗, will be called a language.



Languages - basic definitions

I Alphabet is any non-empty finite set of symbols, e.g., A = {a, b} and
B = {0, 1}.

I A word (string) is a finite sequence of symbols from a given alphabet,
e.g., “1110001110”.

I The empty word, ε, is a sequence without symbols.
I The length of a word is the number of symbols in it.
I The set of all words over alphabet Γ is denoted by Γ∗, e.g.,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

I Any set of words, a subset of Γ∗, will be called a language.



Languages - basic definitions

I Alphabet is any non-empty finite set of symbols, e.g., A = {a, b} and
B = {0, 1}.

I A word (string) is a finite sequence of symbols from a given alphabet,
e.g., “1110001110”.

I The empty word, ε, is a sequence without symbols.
I The length of a word is the number of symbols in it.
I The set of all words over alphabet Γ is denoted by Γ∗, e.g.,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

I Any set of words, a subset of Γ∗, will be called a language.



Finite automata

Definition
A non-deterministic finite automaton (FA) is a tuple (A,Q, qs, F , δ), where:

I A is an input alphabet;
I Q is a finite set of states;
I qs ∈ Q is an initial state;
I F ⊆ Q is a set of accepting states;
I δ : Q × A −→ P(Q) is a transition function.



Regular languages

Definition
The language accepted (recognized) by some FA H, L(H), is the set of all
words over the alphabet A which are accepted by H.

Definition
We say that a language L ⊆ A∗ is regular if and only if there exists some FA
H such that L = L(H).



Example 1

Let A = {a, b} and consider the language L1 = A∗.

q1

a, b



Example 2

Let L2 = ∅

q2

a, b



Example 3

L3 = {ε}

q0 q1

a

b
a, b



Not every language is regular

Lab = {anbn : n ≥ 1}



Push down automata

Definition
A non-deterministic push-down automaton (PDA) is a tuple (A, Γ,#,Q, qs, F , δ), where:

I A is an input alphabet;
I Γ is a stack alphabet;
I # 6∈ Γ is a stack initial symbol, empty stack consists only from it;
I Q is a finite set of states;
I qs ∈ Q is an initial state;
I F ⊆ Q is a set of accepting states;
I δ : Q × (A ∪ {ε})× Γ −→ P(Q × Γ∗) is a transition function.



PDA

push/pop-off a symbol from the top of the stack



Context-free languages

Definition
We say that a language L ⊆ A∗ is context-free if and only if there is a PDA H
such that L = L(H).



Regular ⊂ context-free

There is a PDA for Lab = {anbn : n ≥ 1}.



Beyond context-free languages

Labc = {ak bk ck : k ≥ 1}

We will investigate stronger languages in the last lecture.



Chomsky’s Hierarchy



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



General definition

U A B

S0

S1 S2S3c1

c2
c3

c4

c5



How do we encode models?

U A B

S0

S1 S2S3c1

c2
c3

c4

c5

This model is uniquely described by αM = aĀB̄aAB̄aABaĀBaĀB



Step by step

I Restriction to finite models of the form M = (U,A,B).

I List of all elements of the model: c1, . . . , c5.
I Labeling every element with one of the letters:

aĀB̄ , aAB̄ , aĀB , aAB , according to constituents it belongs to.
I Result: the word αM = aĀB̄aAB̄aABaĀBaĀB .
I αM describes the model in which:

c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB.
I The class Q is represented by the set of words describing all elements of

the class.



Step by step

I Restriction to finite models of the form M = (U,A,B).
I List of all elements of the model: c1, . . . , c5.

I Labeling every element with one of the letters:
aĀB̄ , aAB̄ , aĀB , aAB , according to constituents it belongs to.

I Result: the word αM = aĀB̄aAB̄aABaĀBaĀB .
I αM describes the model in which:

c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB.
I The class Q is represented by the set of words describing all elements of

the class.



Step by step

I Restriction to finite models of the form M = (U,A,B).
I List of all elements of the model: c1, . . . , c5.
I Labeling every element with one of the letters:

aĀB̄ , aAB̄ , aĀB , aAB , according to constituents it belongs to.

I Result: the word αM = aĀB̄aAB̄aABaĀBaĀB .
I αM describes the model in which:

c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB.
I The class Q is represented by the set of words describing all elements of

the class.



Step by step

I Restriction to finite models of the form M = (U,A,B).
I List of all elements of the model: c1, . . . , c5.
I Labeling every element with one of the letters:

aĀB̄ , aAB̄ , aĀB , aAB , according to constituents it belongs to.
I Result: the word αM = aĀB̄aAB̄aABaĀBaĀB .

I αM describes the model in which:
c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB.

I The class Q is represented by the set of words describing all elements of
the class.



Step by step

I Restriction to finite models of the form M = (U,A,B).
I List of all elements of the model: c1, . . . , c5.
I Labeling every element with one of the letters:

aĀB̄ , aAB̄ , aĀB , aAB , according to constituents it belongs to.
I Result: the word αM = aĀB̄aAB̄aABaĀBaĀB .
I αM describes the model in which:

c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB.

I The class Q is represented by the set of words describing all elements of
the class.



Step by step

I Restriction to finite models of the form M = (U,A,B).
I List of all elements of the model: c1, . . . , c5.
I Labeling every element with one of the letters:

aĀB̄ , aAB̄ , aĀB , aAB , according to constituents it belongs to.
I Result: the word αM = aĀB̄aAB̄aABaĀBaĀB .
I αM describes the model in which:

c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB.
I The class Q is represented by the set of words describing all elements of

the class.



Aristotelian quantifiers

“all”, “some”, “no”, and “not all”

q0 q1

Γ− {aAB̄}

aAB̄

Γ

Finite automaton recognizing LAll

LAll = {α ∈ Γ∗ : #aAB̄(α) = 0}



Cardinal quantifiers

E.g. “more than 2”, “less than 7”, and “between 8 and 11”

q0 q1 q2 q3

Γ− {aAB} Γ− {aAB} Γ− {aAB} Γ

aAB aAB aAB

Finite automaton recognizing LMore than two

LMore than two = {α ∈ Γ∗ : #aAB(α) > 2}



Parity quantifiers

E.g. “an even number”, “an odd number”

q0 q1

Γ− {aAB}

aAB

aAB
Γ− {aAB}

Finite automaton recognizing LEven

LEven = {α ∈ Γ∗ : #aAB(α) is even}



Proportional quantifiers

I E.g. “most”, “less than half”.
I Most As are B iff card(A ∩ B) > card(A− B).
I LMost = {α ∈ Γ∗ : #aAB(α) > #aAB̄(α)}.
I There is no finite automaton recognizing this language.
I We need internal memory.
I A push-down automata will do.



Summing up

Definability Examples Recognized by

FO “all” “at least 3” acyclic FA
FO(Dn) “an even number” FA

PrA “most”, “less than half” PDA

Quantifiers, definability, and complexity of automata

Van Benthem, Essays in logical semantics, 1986.

Mostowski, Computational semantics for monadic quantifiers, 1998.



Does it say anything about processing?

Question
Do minimal automata predict differences in verification?



Quantifiers

Logic Psycholinguisticscomputability



Quantifiers

Logic

Psycholinguisticscomputability



Quantifiers

Logic Psycholinguistics

computability



Quantifiers

Logic Psycholinguisticscomputability



A simple study

More than half of the cars are yellow.



Szymaniki & Zajenkowski, Comprehension of simple quantifiers. Empirical evaluation of a computational model, Cognitive

Science, 2010



Neurobehavioral studies

Differences in brain activity.
I All quantifiers are associated with numerosity:

recruit right inferior parietal cortex.
I Only higher-order activate working-memory capacity:

recruit right dorsolateral prefrontal cortex.

McMillan et al., Neural basis for generalized quantifiers comprehension, Neuropsychologia, 2005

Szymanik, A Note on some neuroimaging study of natural language quantifiers comprehension, Neuropsychologia, 2007



Experiment with schizophrenic patients

I Compare performance of:
I Healthy subjects.
I Patients with schizophrenia.

I Known WM deficits.



RT data



Accuracy data

Zajenkowski et al., A computational approach to quantifiers as an explanation for some language impairments in schizophrenia,

Journal of Communication Disorders, 2011.



Teasing apart WM from executive control

I Executive control within Attention Networks Test (ANT)
I resolution of conflict between expectation, stimulus, and response
I = incongruent flanking – congruent flanking



+ Intelligence

I Quantifier verification + Sternberg’s STM +ANT
I Raven’s Advanced Progressive Matrices Test (APM)

1. test of fluid intelligence
2. find a missing one



Quantifiers, WM, and intelligence

I All quantifier correlated with STM.
I Only proportional quantifiers correlated with ANT.
I APM correlated best with proportional quantifiers.
I APM attenuated ANT.

Zajenkowski and Szymanik. Most intelligent people are accurate and some fast people are intelligent, Intelligence 2013



Research questions

1. Build computational cognitive model
I visual aspects
I working memory model
I pragmatics
I etc.



Distribution is skewed towards quantifiers of low complexity

so
m

e a
ll

m
o
st

>
 k

>
 k

/1
0
0

a
t 

le
a
st

 k

a
t 

m
o
st

 k

e
x
a
ct

ly
 k

>
 p

/k

re
ci

p

co
u
n
t

m
a
x
/m

in

su
m

a
v
e
ra

g
e0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
v
e
 f

re
q
u
e
n
cy

Distribution of GQs

averages (inc.)
averages (cum.)
Brown
Clinical
Geoquery
TREC

0.00.20.40.60.81.0

rank

0

1

2

3

4

5

6

7

Distribution of GQs (log-log best fit)

(cum.) y=0.58-4.66x, r^2=0.84
(incr.) y=0.46-4.52x, r^2=0.81

Thorne & Szymanik. Generalized Quantifier Distribution and Semantic Complexity, 2013.



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Model of Computation



Computational Complexity Theory

Question
What amount of resources TM needs to solve a task?

Theorem (determinism vs. non-determinism)
If there is a non-deterministic Turing machine N recognizing a language L,
then there exists a deterministic Turing machine M for language L.

Question
The simulation takes O(cf (n)). Can we do it significantly faster?



Computational Complexity Theory

Question
What amount of resources TM needs to solve a task?

Theorem (determinism vs. non-determinism)
If there is a non-deterministic Turing machine N recognizing a language L,
then there exists a deterministic Turing machine M for language L.

Question
The simulation takes O(cf (n)). Can we do it significantly faster?



Computational Complexity Theory

Question
What amount of resources TM needs to solve a task?

Theorem (determinism vs. non-determinism)
If there is a non-deterministic Turing machine N recognizing a language L,
then there exists a deterministic Turing machine M for language L.

Question
The simulation takes O(cf (n)). Can we do it significantly faster?



Time Complexity

Let f : ω −→ ω.

Definition
TIME(f ) is the class of languages (problems) which can be recognized by a
deterministic Turing machine in time bounded by f with respect to the length
of the input.

Definition
NTIME(f ), is the class of languages L for which there exists a
non-deterministic Turing machine M such that for every x ∈ L all branches in
the computation tree of M on x are bounded by f (n) and moreover M decides
L.



Time Complexity

Let f : ω −→ ω.

Definition
TIME(f ) is the class of languages (problems) which can be recognized by a
deterministic Turing machine in time bounded by f with respect to the length
of the input.

Definition
NTIME(f ), is the class of languages L for which there exists a
non-deterministic Turing machine M such that for every x ∈ L all branches in
the computation tree of M on x are bounded by f (n) and moreover M decides
L.



Time Complexity

Let f : ω −→ ω.

Definition
TIME(f ) is the class of languages (problems) which can be recognized by a
deterministic Turing machine in time bounded by f with respect to the length
of the input.

Definition
NTIME(f ), is the class of languages L for which there exists a
non-deterministic Turing machine M such that for every x ∈ L all branches in
the computation tree of M on x are bounded by f (n) and moreover M decides
L.



Complexity Classes P and NP

Definition

I PTIME =
⋃

k∈ω TIME(nk )

I NPTIME =
⋃

k∈ω NTIME(nk )

Question (Millenium Problem)
P=NP?



Complexity Classes P and NP

Definition

I PTIME =
⋃

k∈ω TIME(nk )

I NPTIME =
⋃

k∈ω NTIME(nk )

Question (Millenium Problem)
P=NP?



(In)tractability

Definition
We say that a function f : A −→ A is a polynomial time computable function iff
there exits a deterministic Turing machine computing f (w) for every w ∈ A in
polynomial time.

Definition
A problem L is polynomial reducible to a problem L′ if there is a polynomial
time computable function such that

w ∈ L ⇐⇒ f (w) ∈ L′.

Definition
A language L is NP-complete if L ∈ NP and every language in NP is
reducible to L.



(In)tractability

Definition
We say that a function f : A −→ A is a polynomial time computable function iff
there exits a deterministic Turing machine computing f (w) for every w ∈ A in
polynomial time.

Definition
A problem L is polynomial reducible to a problem L′ if there is a polynomial
time computable function such that

w ∈ L ⇐⇒ f (w) ∈ L′.

Definition
A language L is NP-complete if L ∈ NP and every language in NP is
reducible to L.



(In)tractability

Definition
We say that a function f : A −→ A is a polynomial time computable function iff
there exits a deterministic Turing machine computing f (w) for every w ∈ A in
polynomial time.

Definition
A problem L is polynomial reducible to a problem L′ if there is a polynomial
time computable function such that

w ∈ L ⇐⇒ f (w) ∈ L′.

Definition
A language L is NP-complete if L ∈ NP and every language in NP is
reducible to L.





Quantifiers in Finite Models

I Finite models can be encoded as strings.
I GQs as classes of such finite strings are languages.

Definition
By the complexity of a quantifier Q we mean the computational complexity of
the corresponding class of finite models.

Question
M ∈ Q? (equivalently M |= Q?)



Quantifiers in Finite Models

I Finite models can be encoded as strings.
I GQs as classes of such finite strings are languages.

Definition
By the complexity of a quantifier Q we mean the computational complexity of
the corresponding class of finite models.

Question
M ∈ Q? (equivalently M |= Q?)



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Multi-quantifier sentences

1. Most villagers and most townsmen hate each other.

2. Three PMs referred to each other indirectly

Q[A,B,R] or Q[A,R]



Lindström quantifiers

Definition
Let t = (n1, . . . , nk ) be a k -tuple of positive integers. A generalized quantifier of type t is a class Q
of models of a vocabulary τt = {R1, . . . ,Rk}, such that Ri is ni -ary for 1 ≤ i ≤ k , and Q is closed
under isomorphisms.

Definition
If in the above definition for all i : ni = 1, then we say that a quantifier is monadic, otherwise we call
it polyadic.

W = {(M,R) | R ⊆ M2 & R is a well-order}.

Ram = {(M,A,R) | A ⊆ M,R ⊆ M2 & ∀a, b ∈ A R(a, b)}.



Lindström quantifiers

Definition
Let t = (n1, . . . , nk ) be a k -tuple of positive integers. A generalized quantifier of type t is a class Q
of models of a vocabulary τt = {R1, . . . ,Rk}, such that Ri is ni -ary for 1 ≤ i ≤ k , and Q is closed
under isomorphisms.

Definition
If in the above definition for all i : ni = 1, then we say that a quantifier is monadic, otherwise we call
it polyadic.

W = {(M,R) | R ⊆ M2 & R is a well-order}.

Ram = {(M,A,R) | A ⊆ M,R ⊆ M2 & ∀a, b ∈ A R(a, b)}.



Lindström quantifiers

Definition
Let t = (n1, . . . , nk ) be a k -tuple of positive integers. A generalized quantifier of type t is a class Q
of models of a vocabulary τt = {R1, . . . ,Rk}, such that Ri is ni -ary for 1 ≤ i ≤ k , and Q is closed
under isomorphisms.

Definition
If in the above definition for all i : ni = 1, then we say that a quantifier is monadic, otherwise we call
it polyadic.

W = {(M,R) | R ⊆ M2 & R is a well-order}.

Ram = {(M,A,R) | A ⊆ M,R ⊆ M2 & ∀a, b ∈ A R(a, b)}.



Coding

Definition
Let τ = {R1, . . . ,Rk} be a relational vocabulary and M a τ -model of the following form:
M = (U,RM

1 , . . . ,R
M
k ), where U = {1, . . . , n} is the universe of model M and RM

i ⊆ Uni is an
ni -ary relation over U, for 1 ≤ i ≤ k . We define a binary encoding for τ -models. The code for M is
a word over {0, 1,#} of length O((card(U))c), where c is the maximal arity of the predicates in τ
(or c = 1 if there are no predicates).
The code has the following form:

ñ#R̃M
1 # . . .#R̃M

n , where:

I ñ is the part coding the universe of the model and consists of n 1s.

I R̃M
i — the code for the ni -ary relation RM

i — is an nni -bit string whose j-th bit is 1 iff the j-th
tuple in Uni (ordered lexicographically) is in RM

i .
I # is a separating symbol.



Coding Example

Consider vocabulary σ = {P,R}, where P is a unary predicate and R a binary relation. Take the
σ-model M = (M,PM ,RM ), where the universe M = {1, 2, 3}, the unary relation PM ⊆ M is equal
to {2} and the binary relation RM ⊆ M2 consists of the pairs (2, 2) and (3, 2).

I ñ consists of three 1s as there are three elements in M.
I P̃M is the string of length three with 1s in places corresponding to the elements from M

belonging to PM . Hence P̃M = 010 as PM = {2}.

I R̃M is obtained by writing down all 32 = 9 binary strings of elements from M in
lexicographical order and substituting 1 in places corresponding to the pairs belonging to RM

and 0 in all other places. As a result R̃M = 000010010.

Adding all together the code for M is 111#010#000010010.



Iteration

1. Most logicians criticized some papers.

2. It(most, some)[Logicians, Papers, Criticized].

Definition
Let Q and Q′ be generalized quantifiers of type (1, 1). Let A,B be subsets of the universe and R a
binary relation over the universe. Suppressing the universe, we will define the iteration operator as
follows:

It(Q,Q′)[A,B,R] ⇐⇒ Q[A, {a | Q′[B,R(a)]}],
where R(a) = {b | R(a, b)}.



Illustration

I Most girls and most boys hate each other.

♀

♀

♀

♂

♂

♂



Iteration is easy

Theorem (Steinert-Threlkeld & Icard)
Let Q and Q′ be computable by DFA (PDA), then It(Q,Q′) is also DFA (PDA)
computable.



Cumulation

I Eighty professors taught sixty courses at ESSLLI’08.

Definition
Cum(Q,Q′)[A,B,R] ⇐⇒

It(Q, some)[A,B,R] ∧ It(Q′, some)[B,A,R−1]



Illustration

I Most girls and most boys hate each other.

♀

♀

♀

♂

♂

♂



Possibly branching sentences

1. Most villagers and most townsmen hate each other.

2. One third of villagers and half of townsmen hate each other.

3. 5 villagers and 7 townsmen hate each other.



Branching reading

I Most girls and most boys hate each other.

most x : G(x)
most y : B(y)

H(x , y).

∃A∃A′[most(G,A) ∧most(B,A′) ∧ ∀x ∈ A ∀y ∈ A′ H(x , y)].



Illustration

I Most girls and most boys hate each other.

♀

♀

♀

♂

♂

♂



Definition

Definition
Let Q and Q′ be both MON↑ quantifiers of type (1, 1). Define the branching of quantifier symbols Q
and Q′ as the type (1, 1, 2) quantifier symbol Br(Q,Q′). A structure M = (M,A,B,R) ∈ Br(Q,Q′)
if the following holds:

∃X ⊆ A ∃Y ⊆ B[(X ,A) ∈ Q ∧ (Y ,B) ∈ Q′ ∧ X × Y ⊆ R].



Branching readings are intractable

Theorem
Proportional branching sentences are NP-complete.



Two-way quantification

It(Q1,Q2) ∧ It(Q2,Q1)



Two-way quantification

It(Q1,Q2) ∧ It(Q2,Q1)

Subjects are happy to accept such interpretation.

Gierasimczuk & Szymanik, Branching Quantification vs. Two-way Quantification, Journal of Semantics, 2009



Two-way quantification

It(Q1,Q2) ∧ It(Q2,Q1)

Subjects are happy to accept such interpretation.

Gierasimczuk & Szymanik, Branching Quantification vs. Two-way Quantification, Journal of Semantics, 2009



Potentially strong reciprocal sentences

1. Andi, Jarmo and Jakub laughed at one another.

2. 15 men are hitting one another.

3. Most of the PMs refer to each other.



Strong reading

I Most of the PMs refer to each other.



Strong reciprocal lift

Definition
Let Q be a right monotone increasing quantifier of type (1, 1). We define:

RamS(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X )

∧ ∀x , y ∈ X (x 6= y =⇒ R(x , y))].



Intermediate reading

I Most Boston pitchers sat alongside each other.



Intermediate reciprocal lift

Definition

RamI(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X )

∧ ∀x , y ∈ X (x 6= y =⇒ ∃ sequence z1, . . . , z` ∈ X such that

(z1 = x ∧ R(z1, z2) ∧ . . . ∧ R(z`−1, z`) ∧ z` = y)].



Weak reading

I Some pirates were staring at each other in surprise.



Weak reciprocal lift

Definition

RamW(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X )

∧ ∀x ∈ X ∃y ∈ X (x 6= y ∧ R(x , y))].



Strong Meaning Hypothesis

Hypothesis
Reading associated with the reciprocal in a given sentence is the strongest
available reading which is consistent with relevant information supplied by the
context.

Example

1. The children followed each other into the church.

2. The children followed each other around the Maypole.

Dalrymple et al., Reciprocal Expressions and the Concept of Reciprocity. Linguistics and Philosophy, 1998.

Szymanik, Computational complexity of polyadic lifts of generalized quantifiers in natural language. L&P 2010.



Strong Meaning Hypothesis

Hypothesis
Reading associated with the reciprocal in a given sentence is the strongest
available reading which is consistent with relevant information supplied by the
context.

Example

1. The children followed each other into the church.

2. The children followed each other around the Maypole.

Dalrymple et al., Reciprocal Expressions and the Concept of Reciprocity. Linguistics and Philosophy, 1998.

Szymanik, Computational complexity of polyadic lifts of generalized quantifiers in natural language. L&P 2010.



Research question

Draw:

1. All/Most of the dots are connected to each other.

I Against SMH:
I Ambiguous between strong and intermediate.

I In line with complexity: fewer strong pictures for ‘most’.

Bott et al., Interpreting Tractable versus Intractable Reciprocal Sentences, Proceedings of the International Conference on

Computational Semantics, 2011.

Schlotterbeck & Bott, Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational

antecedents, Proc. of the Logic & Cognition Workshop at ESSLLI 2012.



Research question

Draw:

1. All/Most of the dots are connected to each other.

I Against SMH:
I Ambiguous between strong and intermediate.

I In line with complexity: fewer strong pictures for ‘most’.

Bott et al., Interpreting Tractable versus Intractable Reciprocal Sentences, Proceedings of the International Conference on

Computational Semantics, 2011.

Schlotterbeck & Bott, Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational

antecedents, Proc. of the Logic & Cognition Workshop at ESSLLI 2012.



Research question

Draw:

1. All/Most of the dots are connected to each other.

I Against SMH:
I Ambiguous between strong and intermediate.

I In line with complexity: fewer strong pictures for ‘most’.

Bott et al., Interpreting Tractable versus Intractable Reciprocal Sentences, Proceedings of the International Conference on

Computational Semantics, 2011.

Schlotterbeck & Bott, Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational

antecedents, Proc. of the Logic & Cognition Workshop at ESSLLI 2012.



Outline

Generalized Quantifiers

Semantic universale

Monotonicity patterns

GQs in logic

Languages and automata

Computing quantifiers

Computational Complexity

Complex GQs
Polyadic quantifiers

Branching Quantifiers
Strong Reciprocity

Collective quantifiers



Collectivity

(1.) All the Knights but King Arthur met in secret.

(2.) Most climbers are friends.

(3.) John and Mary love each other.

(4.) The samurai were twelve in number.

(5.) Many girls gathered.

(6.) Soldiers surrounded the Alamo.

(7.) Tikitu and Samson lifted the table.



Let’s start with examples

(1.) Five people lifted the table.

(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.

(2’.) ∃X [X ⊆ Students ∧ Play(X )].



Let’s start with examples

(1.) Five people lifted the table.

(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.

(2’.) ∃X [X ⊆ Students ∧ Play(X )].



Let’s start with examples

(1.) Five people lifted the table.

(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.

(2’.) ∃X [X ⊆ Students ∧ Play(X )].



Let’s start with examples

(1.) Five people lifted the table.

(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.

(2’.) ∃X [X ⊆ Students ∧ Play(X )].



Let’s start with examples

(1.) Five people lifted the table.

(1’.) ∃=5x [People(x) ∧ Lift(x)].

(1”.) ∃X [X ⊆ People ∧ Card(X ) = 5 ∧ Lift(X )].

(2.) Some students played poker together.

(2’.) ∃X [X ⊆ Students ∧ Play(X )].



Existential modifier

Definition (van der Does 1992)
Fix a universe of discourse U and take any X ⊆ U and Y ⊆ P(U). Define the
existential lift QEM of a quantifier Q in the following way:

QEM (X ,Y ) is true ⇐⇒ ∃Z ⊆ X [Q(X ,Z ) ∧ Z ∈ Y ].

((et)((et)t)) ; ((et)(((et)t)t))



Existential modifier

Definition (van der Does 1992)
Fix a universe of discourse U and take any X ⊆ U and Y ⊆ P(U). Define the
existential lift QEM of a quantifier Q in the following way:

QEM (X ,Y ) is true ⇐⇒ ∃Z ⊆ X [Q(X ,Z ) ∧ Z ∈ Y ].

((et)((et)t)) ; ((et)(((et)t)t))



Van Benthem problem

Observation
(·)EM works only for right monotone increasing quantifiers.

(1.) No students met yesterday at the coffee shop.

— ↓MON↓;↑MON↑
(2.) No left-wing students met yesterday at the coffee shop.

(3.) No students met yesterday at the “Che” coffee shop.



Van Benthem problem

Observation
(·)EM works only for right monotone increasing quantifiers.

(1.) No students met yesterday at the coffee shop.

— ↓MON↓;↑MON↑
(2.) No left-wing students met yesterday at the coffee shop.

(3.) No students met yesterday at the “Che” coffee shop.



Van Benthem problem

Observation
(·)EM works only for right monotone increasing quantifiers.

(1.) No students met yesterday at the coffee shop.

— ↓MON↓;↑MON↑

(2.) No left-wing students met yesterday at the coffee shop.

(3.) No students met yesterday at the “Che” coffee shop.



Van Benthem problem

Observation
(·)EM works only for right monotone increasing quantifiers.

(1.) No students met yesterday at the coffee shop.

— ↓MON↓;↑MON↑
(2.) No left-wing students met yesterday at the coffee shop.

(3.) No students met yesterday at the “Che” coffee shop.



The total number is missing

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)EM [Student,Drink-a-whole-keg-of-beer].

(1”.) ∃A ⊆ Student[card(A) = 5 ∧ Drink-a-whole-keg-of-beer(A)]



The total number is missing

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)EM [Student,Drink-a-whole-keg-of-beer].

(1”.) ∃A ⊆ Student[card(A) = 5 ∧ Drink-a-whole-keg-of-beer(A)]



The total number is missing

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)EM [Student,Drink-a-whole-keg-of-beer].

(1”.) ∃A ⊆ Student[card(A) = 5 ∧ Drink-a-whole-keg-of-beer(A)]



Neutral Modifier

Definition (van der Does 1992)
Let U be a universe, X ⊆ U, Y ⊆ P(U), and Q a type (1, 1) quantifier. We
define the neutral modifier:

QN [X ,Y ] is true ⇐⇒ Q
[
X ,
⋃

(Y ∩ P(X ))
]
.



Monotonicity preservation under (·)N

Fact (Ben-Avi and Winter 2003)
Let Q be a distributive determiner. If Q belongs to one of the classes ↑MON↑,
↓MON↓, MON↑, MON↓, then the collective determiner QN belongs to the
same class. Moreover, if Q is conservative and ∼MON (MON∼), then QN is
also ∼MON (MON∼).



What about split groups?

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)N [Student,Drink-a-whole-keg-of-beer].

card
({

x |∃A ⊆ Student[x ∈ A ∧ Drink-a-whole-keg-of-beer(A)]
})

= 5.



What about split groups?

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)N [Student,Drink-a-whole-keg-of-beer].

card
({

x |∃A ⊆ Student[x ∈ A ∧ Drink-a-whole-keg-of-beer(A)]
})

= 5.



What about split groups?

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)N [Student,Drink-a-whole-keg-of-beer].

card
({

x |∃A ⊆ Student[x ∈ A ∧ Drink-a-whole-keg-of-beer(A)]
})

= 5.



Determiner fitting

Definition (Winter 2001)
For all X ,Y ⊆ P(U) we have that

Qdfit(X ,Y ) is true

⇐⇒

Q[∪X ,∪(X ∩ Y )] ∧ [X ∩ Y = ∅ ∨ ∃W ∈ X ∩ Y ∧Q(∪X ,W )].

((et)((et)t)) ; (((et)t)(((et)t)t))



Determiner fitting

Definition (Winter 2001)
For all X ,Y ⊆ P(U) we have that

Qdfit(X ,Y ) is true

⇐⇒

Q[∪X ,∪(X ∩ Y )] ∧ [X ∩ Y = ∅ ∨ ∃W ∈ X ∩ Y ∧Q(∪X ,W )].

((et)((et)t)) ; (((et)t)(((et)t)t))



Dfit works

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)dfit[Student,Drink-a-whole-keg-of-beer].

card
({

x ∈ A|A ⊆ Student ∧ Drink-a-whole-keg-of-beer(A)
})

= 5

∧ ∃W ⊆ Student[Drink-a-whole-keg-of-beer(W ) ∧ card(W ) = 5].



Dfit works

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)dfit[Student,Drink-a-whole-keg-of-beer].

card
({

x ∈ A|A ⊆ Student ∧ Drink-a-whole-keg-of-beer(A)
})

= 5

∧ ∃W ⊆ Student[Drink-a-whole-keg-of-beer(W ) ∧ card(W ) = 5].



Dfit works

(1.) Exactly 5 students drank a whole keg of beer together.

(1’.) (∃=5)dfit[Student,Drink-a-whole-keg-of-beer].

card
({

x ∈ A|A ⊆ Student ∧ Drink-a-whole-keg-of-beer(A)
})

= 5

∧ ∃W ⊆ Student[Drink-a-whole-keg-of-beer(W ) ∧ card(W ) = 5].



It really works...

Monotonicity of Q Monotonicity of Qdfit Example

↑MON↑ ↑MON↑ Some
↓MON↓ ↓MON↓ Less than five
↓MON↑ ∼MON↑ All
↑MON↓ ∼MON↓ Not all
∼MON∼ ∼MON∼ Exactly five
∼MON↓ ∼MON↓ Not all and less than five
∼MON↑ ∼MON↑ Most
↓MON∼ ∼MON∼ All or less than five
↑MON∼ ∼MON∼ Some but not all

Table : Monotonicity under the determiner fitting operator; cf. (Ben-Avi and Winter
2003).



...but violates invariance properties

Definition
A distributive determiner of type (1, 1) is conservative if and only if the
following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,A ∩ B].

Fact
For every Q the quantifiers QEM , QN , and Qdfit are not CONS.



...but violates invariance properties

Definition
A distributive determiner of type (1, 1) is conservative if and only if the
following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,A ∩ B].

Fact
For every Q the quantifiers QEM , QN , and Qdfit are not CONS.



...and not only because of technicalities

Definition
We say that a collective determiner Q of type ((et)(((et)t)t)) satisfies
collective conservativity iff the following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,P(A) ∩ B].

Fact
For every Q the collective quantifiers QEM , QN , and Qdfit satisfy collective
conservativity.



...and not only because of technicalities

Definition
We say that a collective determiner Q of type ((et)(((et)t)t)) satisfies
collective conservativity iff the following holds for all M and all A,B ⊆ M:

QM [A,B] ⇐⇒ QM [A,P(A) ∩ B].

Fact
For every Q the collective quantifiers QEM , QN , and Qdfit satisfy collective
conservativity.



Invariance properties are forced

I Conservativity incorporated into the lifts.
I We need less arbitrary approach.



Second-order GQs

∃2 = {(M,P) | P ⊆ P(M) & P 6= ∅}.
EVEN = {(M,P) | P ⊆ P(M) & card(P) is even}.

EVEN′ = {(M,P) | P ⊆ P(M) & ∀X ∈ P(card(X ) is even)}.
MOST = {(M,P,S) | P,S ⊆ P(M) & card(P ∩ S) > card(P − S)}.

Observation
SOGQs do not decide invariance properties!

Question
How invariance properties interact with definability?



Second-order GQs

∃2 = {(M,P) | P ⊆ P(M) & P 6= ∅}.
EVEN = {(M,P) | P ⊆ P(M) & card(P) is even}.

EVEN′ = {(M,P) | P ⊆ P(M) & ∀X ∈ P(card(X ) is even)}.
MOST = {(M,P,S) | P,S ⊆ P(M) & card(P ∩ S) > card(P − S)}.

Observation
SOGQs do not decide invariance properties!

Question
How invariance properties interact with definability?



Second-order GQs

∃2 = {(M,P) | P ⊆ P(M) & P 6= ∅}.
EVEN = {(M,P) | P ⊆ P(M) & card(P) is even}.

EVEN′ = {(M,P) | P ⊆ P(M) & ∀X ∈ P(card(X ) is even)}.
MOST = {(M,P,S) | P,S ⊆ P(M) & card(P ∩ S) > card(P − S)}.

Observation
SOGQs do not decide invariance properties!

Question
How invariance properties interact with definability?



Warning!

Do not confuse:

I FO GQs (Lindström) with FO-definable quantifiers
E.g. most is FO GQs but is not FO-definable.

I SO GQs with SO-definable quantifiers
E.g. MOST is SO GQs but probably not SO-definable.



Warning!

Do not confuse:
I FO GQs (Lindström) with FO-definable quantifiers

E.g. most is FO GQs but is not FO-definable.

I SO GQs with SO-definable quantifiers
E.g. MOST is SO GQs but probably not SO-definable.



Warning!

Do not confuse:
I FO GQs (Lindström) with FO-definable quantifiers

E.g. most is FO GQs but is not FO-definable.
I SO GQs with SO-definable quantifiers

E.g. MOST is SO GQs but probably not SO-definable.



GQs are not enough

Theorem (Kontinen 2002)
The extension L∗ of first-order logic by all Lindström quantifiers cannot define
the monadic second-order existential quantifier.

Corollary
Lindström quantifiers alone are not adequate for formalizing all natural
language quantification.

Example
Some students gathered to play poker.



GQs are not enough

Theorem (Kontinen 2002)
The extension L∗ of first-order logic by all Lindström quantifiers cannot define
the monadic second-order existential quantifier.

Corollary
Lindström quantifiers alone are not adequate for formalizing all natural
language quantification.

Example
Some students gathered to play poker.



GQs are not enough

Theorem (Kontinen 2002)
The extension L∗ of first-order logic by all Lindström quantifiers cannot define
the monadic second-order existential quantifier.

Corollary
Lindström quantifiers alone are not adequate for formalizing all natural
language quantification.

Example
Some students gathered to play poker.



For example . . .

Definition
Denote by someEM :

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(Y 6= ∅ & P ∈ G)}.

(3.) Some students played poker together.

(3’.) someEM x ,X [Student(x),Play(X )].



For example . . .

Definition
Denote by someEM :

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(Y 6= ∅ & P ∈ G)}.

(3.) Some students played poker together.

(3’.) someEM x ,X [Student(x),Play(X )].



For example . . .

Definition
Denote by someEM :

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(Y 6= ∅ & P ∈ G)}.

(3.) Some students played poker together.

(3’.) someEM x ,X [Student(x),Play(X )].



Another example . . .

Definition
We take fiveEM to be the second-order quantifier denoting:

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(card(Y ) = 5 & P ∈ G)}.

(4.) Five people lifted the table.

(4’.) fiveEMx ,X [Student(x), Lift(X )].



Another example . . .

Definition
We take fiveEM to be the second-order quantifier denoting:

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(card(Y ) = 5 & P ∈ G)}.

(4.) Five people lifted the table.

(4’.) fiveEMx ,X [Student(x), Lift(X )].



Another example . . .

Definition
We take fiveEM to be the second-order quantifier denoting:

{(M,P,G) | P ⊆ M; G ⊆ P(M) : ∃Y ⊆ P(card(Y ) = 5 & P ∈ G)}.

(4.) Five people lifted the table.

(4’.) fiveEMx ,X [Student(x), Lift(X )].



SO-definable GQs are closed on lifts

Theorem
Let Q be a Lindström quantifier definable in SO. Then the collective
quantifiers QEM , QN , and Qdfit are definable in SO.

Proof.
Let us consider the case of QEM . Let ψ(x) and φ(Y ) be formulas. We want to
express QEMx ,Y (ψ(x), φ(Y )) in second-order logic. By the assumption, the
quantifier Q can be defined by some sentence θ ∈ SO[{P1,P2}]. We can now
use the following formula:

∃Z (∀x(Z (x)→ ψ(x)) ∧ (θ(P1/ψ(x),P2/Z ) ∧ φ(Y/Z )).



SO-definable GQs are closed on lifts

Theorem
Let Q be a Lindström quantifier definable in SO. Then the collective
quantifiers QEM , QN , and Qdfit are definable in SO.

Proof.
Let us consider the case of QEM . Let ψ(x) and φ(Y ) be formulas. We want to
express QEMx ,Y (ψ(x), φ(Y )) in second-order logic. By the assumption, the
quantifier Q can be defined by some sentence θ ∈ SO[{P1,P2}]. We can now
use the following formula:

∃Z (∀x(Z (x)→ ψ(x)) ∧ (θ(P1/ψ(x),P2/Z ) ∧ φ(Y/Z )).



And this is the case for all SO-definable lifts

Theorem
Let us assume that the lift (·)∗ and a Lindström quantifier Q are both
definable in second-order logic. Then the collective quantifier Q∗ is also
definable in second-order logic.



Some collectives are not definable in SO

Theorem (Kontinen and Szymanik 2012)
The quantifier MOST is not definable in second-order logic.

Proof.
By translating into FO(+, x) over cardinalities 2n and using Ajtai’s 1983
results.



Consequences

Corollary
The type-shifting strategy is not general enough to cover all collective
quantification in natural language.



What is the right ontology for semantics?

I L∗ and SO doesn’t capture natural language?

I Are many-sorted (algebraic) models more plausible?
I Type-shifting is too complex;
I In principle this question is psychologically testable.



What is the right ontology for semantics?

I L∗ and SO doesn’t capture natural language?
I Are many-sorted (algebraic) models more plausible?

I Type-shifting is too complex;
I In principle this question is psychologically testable.



Σ1
1(Ristad’s)-thesis

Hypothesis
Our everyday language is semantically bounded by the properties
expressible in the existential fragment of second-order logic.



I Does SOGQ “MOST” belong to everyday language?
I Everyday language doesn’t realize prop. coll. qua.
I No need to extend the higher-order approach to prop. qua.

Question
Have we just encountered an example where complexity restricts the
expressibility of everyday language as suggested by Σ1

1-thesis?



I Does SOGQ “MOST” belong to everyday language?
I Everyday language doesn’t realize prop. coll. qua.
I No need to extend the higher-order approach to prop. qua.

Question
Have we just encountered an example where complexity restricts the
expressibility of everyday language as suggested by Σ1

1-thesis?


	Generalized Quantifiers
	Semantic universale
	Monotonicity patterns
	GQs in logic
	Languages and automata
	Computing quantifiers
	Computational Complexity
	Complex GQs
	Polyadic quantifiers
	Collective quantifiers


